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Overview
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Variational Autoencoder - The Idea [EZWELIECTET

Autoencoder

@ The objective = Dimensionnality Reduction

Figure: Simple Autoencoder
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Variational Autoencoder - The Idea [EZWELIECTET

Autoencoder

@ The objective = Dimensionnality Reduction

Figure: Simple Autoencoder

@ Need for a representation of the image = vectors

. Decoder
X

x'=d(z)

[TTTT]

Figure: Simple Autoencoder

4/68



AutoEncoder

Assumptions:

@ Let x € X be a set a data. We assume that there exists z € Z such that z is
a low dimensional representation of x
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Assumptions:
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AutoEncoder

Assumptions:
@ Let x € X be a set a data. We assume that there exists z € Z such that z is
a low dimensional representation of x

@ The encoder ey and decoder d are functions modelled by neural networks
(NNs) such that 6 and ¢ are the weights of the NNs

o Let 2’ be the reconstructed samples, the objective is to have z ~ 2’

The Objective function writes:

L=z — 2| = o — dg(2)|* = ||z — dy(eq(2))]?
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AutoEncoder

Assumptions:

@ Let x € X be a set a data. We assume that there exists z € Z such that z is
a low dimensional representation of x

@ The encoder ey and decoder d are functions modelled by neural networks
(NNs) such that 6 and ¢ are the weights of the NNs

o Let 2’ be the reconstructed samples, the objective is to have z ~ 2’
The Objective function writes:
L=z —a'|* = |lz —dg(2)[* = || — dy(eq(2))||
= The networks are optimised using stochastic gradient descent

G p—c-Vol
0 0—c VoL
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AutoEncoder - Shortcomings

@ How to generate new data 7

Sampler [—» Decoder

HEREER

x' generated

Figure: Generation procedure ?
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AutoEncoder - Shortcomings

@ How to generate new data 7
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Sampler |—» Decoder || D e o %o
° N B
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x' generated D

Figure: Generation procedure ? Figure: Potential latent space

@ How to sample form the latent space?
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AutoEncoder - Shortcomings

@ How to generate new data 7
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Figure: Generation procedure ? Figure: Potential latent space

@ How to sample form the latent space?

@ The AutoEncoder was just trained to encode and decode the input data
without information on its structure or distribution.
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AutoEncoder - Shortcomings

@ How to generate new data 7

- O
Sampler |—» Decoder || D e o %o
° N B
— o g
x' generated D

Figure: Generation procedure ? Figure: Potential latent space

@ How to sample form the latent space?

@ The AutoEncoder was just trained to encode and decode the input data
without information on its structure or distribution.

— Need for a new framework
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Variational Autoencoder - The Idea EAYZVSRIEINENEIS

VAE - The Idea

@ An autoencoder based model...

Figure: Simple autoencoder
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Variational Autoencoder - The Idea EAYZVSRIEINENEIS

VAE - The Idea

@ An autoencoder based model...

Figure: Simple autoencoder

@ ... but where an input data point is encoded as a distribution defined over
the latent space [2, 4]

p(zlx) |—» Decoder

Figure: VAE framework
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VAE - Mathematical Considerations

o Let z € X be a set of data and {Py, 0 € ©} be a parametric model
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VAE - Mathematical Considerations

o Let z € X be a set of data and {Py, 0 € ©} be a parametric model

@ We assume there exists latent variables z € Z living in a smaller space such
that the marginal likelihood writes

p@(x) = /pH(x‘z)Qprior(Z)dzy

where gprior is a prior distribution over the latent variables and pg(z|2) is
referred to as the decoder
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@ We assume there exists latent variables z € Z living in a smaller space such
that the marginal likelihood writes

p@(x) = /pH(x‘z)Qprior(Z)dza

where gprior is a prior distribution over the latent variables and pg(z|2) is
referred to as the decoder

o Example:
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Gprior = N(07 I)a pg(x|z) = HB(T‘-Ol(z))

i=1
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@ Maximizing the likelihood of the model
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VAE - Mathematical Considerations

o Let z € X be a set of data and {Py, 0 € ©} be a parametric model

@ We assume there exists latent variables z € Z living in a smaller space such
that the marginal likelihood writes

p@(x) = /pH(x‘z)Qprior(Z)dza

where gprior is a prior distribution over the latent variables and pg(z|2) is
referred to as the decoder

o Example:
D

Gprior = N(07 I)a pg(x|z) = HB(T‘-Ol(z))

i=1
Objective:
@ Maximizing the likelihood of the model

Problem: The integral is often intractable.
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Variational inference

We have to use Variational Inference:

logpo(s) = log ( / pe(a:|z>qprior<z>dz)
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Variational inference

We have to use Variational Inference:

logpo(s) = log ( / pe(a:|z>qprior<z>dz)

log ( / pola, z)dz)

log (/pg(x,z);]i;dz> , for any pdf ¢
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Variational inference

We have to use Variational Inference:

log pe(x)
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pg(x,z)dz> , for any pdf ¢

v

/(logpe(x’z) q(z)dz, using Jensen's inequality
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AEUEHILEIWANTEN [T CHEl  Mathematical foundations

Variational inference

We have to use Variational Inference:

ognote) = tog ( [ pa(x|z>qpﬁor<z>dz)
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q(z)dz, using Jensen's inequality

> / (log po(, 2)) a(2)dz — H(q(2))

with H the entropy of ¢(z).
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Variational inference

We have to use Variational Inference:

ognote) = tog ( [ pa(x|z>qpﬁor<z>dz)
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q(z)dz, using Jensen's inequality

> [ (ogpu(e,2) a(:)dz - Hia(2)
with H the entropy of ¢(z).

The equality holds for ¢(z) = pg(z|x).
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Variational inference: The ELBO

o Well-know issue: the posterior g(z) = pg(z|x) is intractable.

— use Expectation-Maximization algorithms (up to the MCMC-SAEM
version)

@ OR approximate this posterior — ELBO
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Variational inference: The ELBO

o Well-know issue: the posterior g(z) = pg(z|x) is intractable.

— use Expectation-Maximization algorithms (up to the MCMC-SAEM
version)

@ OR approximate this posterior — ELBO
@ Introduce a parametric approximation:

qo(2|7) = po(z]z),

where g4(z|x) = N (pg(z), Ep(2))
@ This leads to an unbiased estimate of the log-likelihood

~ o p@(xaz)
P = ol

) Ez~q¢,(z\x)[]5\9(w)] :pg(x) )
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Variational inference: The ELBO

o Well-know issue: the posterior g(z) = pg(z|x) is intractable.

— use Expectation-Maximization algorithms (up to the MCMC-SAEM
version)

@ OR approximate this posterior — ELBO
@ Introduce a parametric approximation:

qo(2|7) = po(z]z),

where g4(z|x) = N (pg(z), Ep(2))
@ This leads to an unbiased estimate of the log-likelihood

~ o p@(xaz)
P = ol

) Ez~q¢,(z\x)[]5\9(w)] :pg(x) )

@ and the definition of the Evidence Lower Bound (ELBO):

log pg () > Bzng,(2[a) [l0g(po(, 2)) — log(gs(2|2))]
> ELBO
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Variational inference: The ELBO

Objective:

1. Optimize the ELBO as a function instead of the target distribution
Use stochastic gradient descent in both 6 and ¢

31/68



AEUEHILEIWANTEN [T CHEl  Mathematical foundations

The Reparametrization Trick for stochastic gradient
descent

@ Since z ~ N (ug(x),Xg4(x)), the model is not amenable to gradient descent

Sampling prevents
back-propagation

Ao |
e

(a) Back-propagation impossible
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AEUEHILEIWANTEN [T CHEl  Mathematical foundations

The Reparametrization Trick for stochastic gradient
descent

@ Since z ~ N (ug(x),Xg4(x)), the model is not amenable to gradient descent

Sampling prevents

back-propagation €~ N(O,I) No back-propagation
/ ! __ needed
' o
Al 4 — “lz =y +E.E W
’ 72~ N(UX_E‘) ux / 0 X x
B gt

(b) Back-propagation possible

(a) Back-propagation impossible
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AEUEHILEIWANTEN [T CHEl  Mathematical foundations

The Reparametrization Trick for stochastic gradient
descent

@ Since z ~ N (ug(x),Xg4(x)), the model is not amenable to gradient descent

Sampling prevents

back-propagation €~ N(O,I) No back-propagation
/ ! __ needed
' <7
Al 4 — Lz, =pte. L
Kl z~N@, z) M, / o= My «
B gt

(b) Back-propagation possible

(a) Back-propagation impossible

= Optimization with respect to encoder and decoder parameters made possible !

Objective — OK
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AEUEHILEIWANTEN [T CHEl  Mathematical foundations

Generating new samples

@ We only need to sample z ~ N (0, 1) and feed it to the decoder.

Z~N(@O,I) |—» Decoder

[TTTT]

x' generated

Figure: Generation procedure using prior
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Generating new samples

@ We only need to sample z ~ N (0, 1) and feed it to the decoder.

Z~N(@O,I) |—» Decoder

[TTTT]

x' generated

Figure: Generation procedure using prior

Pros:
@ Very simple to use in practice
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AEUEHILEIWANTEN [T CHEl  Mathematical foundations

Generating new samples

@ We only need to sample z ~ N (0, 1) and feed it to the decoder.

Z~N(@O,I) |—» Decoder

[TTTT]

x' generated

Figure: Generation procedure using prior

Pros:
@ Very simple to use in practice
Cons:

@ The prior and posterior are not expressive enough to capture complex
distributions

@ Poor latent space prospecting
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Toward a Geometric Perspective on VAEs Some Elements of Riemannian Geometry

Defining a new framework

Assumptions:

@ As of now the latent space structure was supposed to be Euclidean (i.e.
Z =R%)

38/68



Toward a Geometric Perspective on VAEs Some Elements of Riemannian Geometry

Defining a new framework

Assumptions:

@ As of now the latent space structure was supposed to be Euclidean (i.e.
Z =R%)

@ Let us now relax this hypothesis and assume that Z is a Riemannian
manifold endowed with a metric G.
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Some Elements of Riemannian Geometry
Riemannian geometry principles

@ Riemannian manifold: (reduced to our model) R? endowed with a metric G:
M= (R%G).
= R< not flat anymore, curved space (as montains)
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Toward a Geometric Perspective on VAEs Some Elements of Riemannian Geometry

Riemannian geometry principles

@ Riemannian manifold: (reduced to our model) R? endowed with a metric G:
M= (R%G).
= R< not flat anymore, curved space (as montains)

@ Geodesic curves:

o Length of a curve v : [0,1] = M from z; to z2 living in a Riemannian
manifold M

L(y) = / V@)Y () ymydt  7(0) = z1,7(1) = 22
° (1)
- / NIOCICIONAOL

e Geodesic paths = curve v minimizing Eq. (1)
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Toward a Geometric Perspective on VAEs Some Elements of Riemannian Geometry

Riemannian geometry principles

@ Riemannian manifold: (reduced to our model) R? endowed with a metric G:
M= (R%G).
= R< not flat anymore, curved space (as montains)

@ Geodesic curves:

o Length of a curve v : [0,1] = M from z; to z2 living in a Riemannian
manifold M

L(y) = / V@)Y () ymydt  7(0) = z1,7(1) = 22
° (1)
:/\ﬁwaGm@»qut

e Geodesic paths = curve v minimizing Eq. (1)
e or equivalently minimizing the curve energy
1
B0 = [0/ 07/ Ohdt (0) =21.9(1) = 2
0
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Some Elements of Riemannian Geometry
Riemannian geometry principles

Shortest path geodesic on sinusoidal surface. See Ref. 1 below.

Figure: Image taken from: Fast Marching Methods on Triangulated Domains : Kimmel, R., and
Sethian, J.A., Proceedings of the National Academy of Sciences, 95, pp. 8341-8435, 1998
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Toward a Geometric Perspective on VAEs Some Elements of Riemannian Geometry

Riemannian Gaussian Distribution

Given a Riemannian manifold M endowed with the Riemannian metric G and a
chart z, an infinitesimal volume element may be defined on each tangent space T,

of the manifold M
dM, = /det G(2)dz, 2)

with dz being the Lebesgue measure.
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Toward a Geometric Perspective on VAEs Some Elements of Riemannian Geometry

Riemannian Gaussian Distribution

Given a Riemannian manifold M endowed with the Riemannian metric G and a
chart z, an infinitesimal volume element may be defined on each tangent space T,

of the manifold M
dM, = /det G(2)dz, 2)

with dz being the Lebesgue measure.

A Riemannian Gaussian distribution on M can be defined using this canonical
measure and the Riemannian distance.

1 dist e
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LCVEICIEN R BTl LI EVER VY= Some Elements of Riemannian Geometry

Riemannian Gaussian Distribution

Given a Riemannian manifold M endowed with the Riemannian metric G and a
chart z, an infinitesimal volume element may be defined on each tangent space T,

of the manifold M
dM, = /det G(2)dz, 2)

with dz being the Lebesgue measure.

A Riemannian Gaussian distribution on M can be defined using this canonical
measure and the Riemannian distance.

1 dist e

So,
N(Z‘/LE) = -/\[riem(z|a- = 17/1') )

where G is the constant Riemannian metric G(z) = 7!, Vz € M.
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CYEIC IENE I ISR VNI A Geometric view of the Model

The ldea

The main idea is to see the posterior gy (z|z;) = N (pu(z;), X(z;)) as a
Riemannian Gaussian distribution where the Riemannian distance is simply the
distance with respect to the metric tensor 1 (x;).

Glu(x) = 57 ().
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CYEIC IENE I ISR VNI A Geometric view of the Model

The ldea

The main idea is to see the posterior gy (z|z;) = N (pu(z;), X(z;)) as a
Riemannian Gaussian distribution where the Riemannian distance is simply the
distance with respect to the metric tensor 1 (x;).

G(p(r;)) = B (24) .
= Only defined at p(z;)
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The Idea
The main idea is to see the posterior gy (z|z;) = N (pu(z;), X(z;)) as a

Riemannian Gaussian distribution where the Riemannian distance is simply the
distance with respect to the metric tensor 1 (x;).

G(p(r;)) = B (24) .
= Only defined at p(z;)

Inspired from [1], we propose to build a smooth continuous Riemannian metric
defined on the entire latent space as follows:

N
:ZE 1 )+)\ 6—7H2H2 1,

= @
_ ( dists-1(5,)(2, ,u(xz))2>

where dists; 1(s,) (2, u(2))?2 = (= — () T2 () (= — ().
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Algorithm to Build the Metric

Algorithm 1 Building the metric from a trained model

Input: A trained VAE model m, the training dataset X', A, 7

> In practice 7 ~ 0

for z; € X do
Wiy B = m(x;) > Retrieve training embeddings and covariance matrices
end for

Select k centroids ¢; in the j;
Get corresponding covariance matrices 33;

> e.g. with k-medoids

p  max m;n lei = ¢jll2 > Set p to the max distance between two closest neighbors
i JFi :

Build the metric using Eq. (I7)
N 2
G(z) =Y B wi(z) + A eIzl gy
i1

Return G

> Return G as a function

Building the metric from a trained model
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QCVEICIEN L Tl L LR MVZN=S A Geometric view of the Model

A Riemannian Latent Space

Dashed lines represent affine interpolations while the solid ones show interpolations
aiming at minimizing the potential V(z) = (y/det G(z))~! all along the curve.

Learned latent space (a) Distance map (b) Distance Maps
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LIRS IS VRN A new Sampling Scheme

New Sampling Procedure

Sampling for the intrinsic uniform Riemannian distribution Since the volume
of the whole manifold M = (R, G) is finite, we can now define a uniform
distribution on M
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LIRS IS VRN A new Sampling Scheme

New Sampling Procedure

Sampling for the intrinsic uniform Riemannian distribution Since the volume
of the whole manifold M = (R, G) is finite, we can now define a uniform
distribution on M

det G(z)

Jpa V/det G(2)dz

Z/{Riem(z) -
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LCEICIEN L Tl (I EVER VNS A new Sampling Scheme

New Sampling Procedure

Sampling for the intrinsic uniform Riemannian distribution Since the volume
of the whole manifold M = (R, G) is finite, we can now define a uniform
distribution on M

det G(z)

Jpa V/det G(2)dz

Since the Riemannian metric has a closed form expression sampling from this
distribution is quite easy and may be performed using the HMC sampler [3].

uRiem(Z) -

N
G(2) =Y =7 @) wilz) + A-e B gy,

=1
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Generation results

MODEL MNIST (16) SVHN (16) CIFAR 10 (32) CELEBA (64)
FID,  PRD? FID | PRD 1 FID | PRDT | FID|  PRDT

AE-N(0,1) | 46.41  0.86/0.77 | 119.65  0.54/0.37 | 196.50  0.05/0.17 | 64.64  0.29/0.42
WAE 2071 0.93/0.88 | 49.07  0.80/0.85 | 132.99  0.24/0.52 | 54.56  0.57/0.55
VAE-N(0,1) | 40.70  0.83/0.75 | 83.55  0.69/0.55 | 162.58  0.10/0.32 | 64.13  0.27/0.39
VAMP 34.02  0.83/0.88 | 91.98  0.55/0.63 | 198.14  0.05/0.11 | 73.87  0.09/0.10
HVAE 1554 0.97/0.95 | 98.05  0.64/0.68 | 201.70  0.13/0.21 | 52.00  0.38/0.58
RHVAE 36.51  0.73/0.28 | 121.69  0.55/0.41 | 167.41  0.12/0.22 | 55.12  0.45/0.56
AE - GMM 9.60  0.95/0.90 | 5421  0.82/0.83 | 130.28  0.35/0.58 | 56.07  0.32/0.48
RAE (GP) 9.44  0.97/0.98 | 61.43  0.79/0.78 | 120.32  0.34/0.58 | 59.41  0.28/0.49
RAE (L2) 9.89  0.97/0.98 | 58.32  0.82/0.79 | 12325  0.33/0.54 | 54.45  0.35/0.55
RAE (SN) 1122 0.97/0.98 | 95.64  0.53/0.63 | 114.59  0.32/0.53 | 55.04  0.36/0.56
RAE 1123 0.98/0.98 | 66.20  0.76/0.80 | 118.25  0.35/0.57 | 53.29  0.36/0.58
VAE - GMM 13.13 0.95/0.92 | 5232  0.82/0.85 | 13825 0.29/0.53 | 55.50  0.37/0.49
VAE-OURS | 853  0.98/0.97 | 46.99  0.84/0.85 | 93.53  0.71/0.68 | 48.71  0.44/0.62

Generation results
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Generation results

AE-N
VAE - N/
WAE
VAMP
HVAE
RHVAE
AE - GMM

VAE - GMM

79 519K
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VAE - Ours

Generation samples

56 /68



Generation results - Sampling Diversity

Recall the shape of the metric:

ZE (z) + A- e Tlz |3 . 1;,
dlStE—l(zi)(zmu(wi))2
wi(z)=exp | — e )

where dists;—1(4,) (2, 1(2:))? = (2 — p(2:)) T2 @) (z — ().
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Generation results - Sampling Diversity

Recall the shape of the metric:

ZE )_|_)\ e_TH Hz Id

dlStE—l(xi)(Z,M(xi))z
wi(z)=exp | — e )

where dists;—1(4,) (2, 1(2:))? = (2 — p(2:)) T2 @) (z — ().

Near. Near, Near. Near, Near, Near, Near, Near,

Gen. train  rec.  Gen. train  rec.  Gen. train rec. Gen. train rec.

. reconstruction vs. generation
MNIST  CELEBA
t} &_ ) FID | 1127  30.12

Sampling diversity
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Toward a Geometric Perspective on VAEs [EIREII

Generation results - Sampling Diversity

Decoded centroid Nearest train image Generated samples

E3 3 3
[Fessd=n

Case with 2 centroids
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Toward a Geometric Perspective on VAEs [EIREII

Generation results - Influence of the number of centroids

Recall the shape of the metric:

FID

N
G(z) = szl(xi) cwi(2) + A e Tllzl3 Iy,
i—1

100 mnist 7 mnist
%0 —o— celeba —— celeba
80 60
70
50{ ¢
60 a
50 a0
10
20
30
20 20
10 "
10 100 1000 10000 1 3 3 5

Number of centroids in the metric

Centroids choice

Influence of the centroids
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Generation results - Influence of A\

Recall the shape of the metric:

N
G(z) = szl(xi) cwi(2) + X eTIzlE L,
i=1

80

70 mnist
—o— celeba

60
501 e .

FID

40
30
20

10

10 10° 104 10 10?2 10! 109
Value of A

Influence of A\
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Toward a Geometric Perspective on VAEs [EIREII

Generation results - Influence of the Number of Training
Samples

MNIST CIFAR 10
300 WAE - N0, 1)
200 @~ RAE-GP-N(0, 1)
#- RAEL2-N(D,1)
RAESN-N(0,1)

@ VAE-N(,1)

RAE-SN - GMM
- VAE-GMM
—#— VAE-Ours

0.1 0.5 1.0 5.0 0.1 0.5 1.0 5.0
x10% x10*

Influence of the number of training samples (FID)
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Can the method benefit more recent models

Can the method be applied to more recent models and benefit them?

MODEL GENERATION | MNIST  CELEBA
e TR R G
we e [ B
AE e | r S
vasoax R[S

Method applied to more recent models
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Interested in VAEs 7

Check out Pythae, a Python library that unifies Generative Autoencoder
implementations in Python.

Documentation

pythae

This library implements some of the most common (Variational) Autoencoder models under a unified implementation
In particular, it provides the possibility to perform benchmark experiments and comparisons by training the models
with the same autoencoding neural network architecture. The feature make your own autoencoder allows you to train
any of these madels with your own data and own Encoder and Decoder neural networks. It integrates experiment
monitoring tools such wandb and mifiow , and allows model sharing and loading from the HuggingFace Hub & in a
few lines of code.

Quick access:

« Installation

Implemented models / Implemented samplers

Reproducibility statement / Results flavor

Model training / Data generation / Custom network architectures

Model sharing with & Hub / Experiment tracking with wandb # Experiment tracking with mLf Low

Tutorials / Documentation

Contributing # / Issues ¢

Citing this repository
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Interested in VAEs ?

GAE Model Pythae model
Autoencoder AE
Variational Autoencoder VAE

Beta Variational Autoencoder BetaVAE
VAE with Linear Normalizing Flows VAE_LinNF
VAE with Inverse Autoregressive Flows VAE_IAF
Disentangled 3-VAE DisentangledBetaVAE
Disentangling by Factorising FactorVAE
Beta-TC-VAE BetaTCVAE
Importance Weighted Autoencoder IWAE
Multiply Importance Weighted Autoencoder MIWAE
Partially Importance Weighted Autoencoder PIWAE
Combination Importance Weighted Autoencoder CIWAE
VAE with perceptual metric similarity MSSSIM_VAE
Wasserstein Autoencoder WAE

Info Variational Autoencoder INFOVAE_MMD
VAMP Autoencoder VAMP
Hyperspherical VAE SVAE
Poincaré Disk VAE Poicaré VAE
Adversarial Autoencoder Adversarial_AE
Variational Autoencoder GAN VAEGAN
Vector Quantized VAE VQVAE
Hamiltonian VAE HVAE
Regularized AE with L2 decoder param RAE_L2
Regularized AE with gradient penalty RAE_GP
Riemannian Hamiltonian VAE RHVAE
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Some Resources on VAE

Pythae - Resources

v Github: https://github.com/clementchadebec/benchmark_VAE

v Online documentation: https://pythae.readthedocs.io/en/latest/
v Pypi project page: https://pypi.org/project/pythae/

v" Open to contributors!

pip install pythae
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Thank you

Thank you!

Code of the paper:
https://github.com/clementchadebec/geometric_perspective_on_vaes

Code for Pythae: https://github.com/clementchadebec/benchmark_VAE
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