A Geometric Perspective on Variational Autoencoders

Clément Chadebec and Stéphanie Allassonnière

Université de Paris - INRIA (HeKA team) - INSERM

NeurIPS 2022

November 3, 2022

Overview

(1) Variational Autoencoder - The Idea

- Autoencoder
- VAE framework
- Mathematical foundations
(2) Toward a Geometric Perspective on VAEs
- Some Elements of Riemannian Geometry
- A Geometric view of the Model
- A new Sampling Scheme
- Results
(3) Some Resources on VAE

Autoencoder

- The objective \Longrightarrow Dimensionnality Reduction

Figure: Simple Autoencoder

- Need for a representation of the image \Longrightarrow vectors

Autoencoder

- The objective \Longrightarrow Dimensionnality Reduction

Figure: Simple Autoencoder

- Need for a representation of the image \Longrightarrow vectors

Figure: Simple Autoencoder

AutoEncoder

Assumptions:

- Let $x \in \mathcal{X}$ be a set a data. We assume that there exists $z \in \mathcal{Z}$ such that z is a low dimensional representation of x
- The encoder e_{θ} and decoder d_{ϕ} are functions modelled by neural networks (NNs) such that θ and ϕ are the weights of the NNs
- Let x^{\prime} be the reconstructed samples, the objective is to have $x \simeq x^{\prime}$

The Objective function writes:

$$
\dot{\mathcal{L}}=\left\|x-x^{\prime}\right\|^{2}=\left\|x-d_{\phi}(z)\right\|^{2}=\left\|x-d_{\phi}\left(e_{\theta}(x)\right)\right\|^{2}
$$

\Longrightarrow The networks are optimised using stochastic gradient descent

AutoEncoder

Assumptions:

- Let $x \in \mathcal{X}$ be a set a data. We assume that there exists $z \in \mathcal{Z}$ such that z is a low dimensional representation of x
- The encoder e_{θ} and decoder d_{ϕ} are functions modelled by neural networks (NNs) such that θ and ϕ are the weights of the NNs

The Objective function writes:

\Longrightarrow The networks are optimised using stochastic gradient descent

AutoEncoder

Assumptions:

- Let $x \in \mathcal{X}$ be a set a data. We assume that there exists $z \in \mathcal{Z}$ such that z is a low dimensional representation of x
- The encoder e_{θ} and decoder d_{ϕ} are functions modelled by neural networks (NNs) such that θ and ϕ are the weights of the NNs
- Let x^{\prime} be the reconstructed samples, the objective is to have $x \simeq x^{\prime}$

The Objective function writes:

\Longrightarrow The networks are optimised using stochastic gradient descent

AutoEncoder

Assumptions:

- Let $x \in \mathcal{X}$ be a set a data. We assume that there exists $z \in \mathcal{Z}$ such that z is a low dimensional representation of x
- The encoder e_{θ} and decoder d_{ϕ} are functions modelled by neural networks (NNs) such that θ and ϕ are the weights of the NNs
- Let x^{\prime} be the reconstructed samples, the objective is to have $x \simeq x^{\prime}$

The Objective function writes:

$$
\mathcal{L}=\left\|x-x^{\prime}\right\|^{2}=\left\|x-d_{\phi}(z)\right\|^{2}=\left\|x-d_{\phi}\left(e_{\theta}(x)\right)\right\|^{2}
$$

\Longrightarrow The networks are optimised using stochastic gradient descent

AutoEncoder

Assumptions:

- Let $x \in \mathcal{X}$ be a set a data. We assume that there exists $z \in \mathcal{Z}$ such that z is a low dimensional representation of x
- The encoder e_{θ} and decoder d_{ϕ} are functions modelled by neural networks (NNs) such that θ and ϕ are the weights of the NNs
- Let x^{\prime} be the reconstructed samples, the objective is to have $x \simeq x^{\prime}$

The Objective function writes:

$$
\mathcal{L}=\left\|x-x^{\prime}\right\|^{2}=\left\|x-d_{\phi}(z)\right\|^{2}=\left\|x-d_{\phi}\left(e_{\theta}(x)\right)\right\|^{2}
$$

\Longrightarrow The networks are optimised using stochastic gradient descent

$$
\begin{aligned}
& \phi \leftarrow \phi-\varepsilon \cdot \nabla_{\phi} \mathcal{L} \\
& \theta \leftarrow \theta-\varepsilon \cdot \nabla_{\theta} \mathcal{L}
\end{aligned}
$$

AutoEncoder - Shortcomings

- How to generate new data?

Figure: Generation procedure ?

- How to sample form the latent space?
- The AutoEncoder was just trained to encode and decode the input data without information on its structure or distribution.
\Longrightarrow Need for a new framework

AutoEncoder - Shortcomings

- How to generate new data?

Figure: Generation procedure ?

Figure: Potential latent space

- How to sample form the latent space?
- The AutoEncoder was just trained to encode and decode the input data without information on its structure or distribution.

AutoEncoder - Shortcomings

- How to generate new data ?

Figure: Generation procedure ?

Figure: Potential latent space

- How to sample form the latent space?
- The AutoEncoder was just trained to encode and decode the input data without information on its structure or distribution.

AutoEncoder - Shortcomings

- How to generate new data ?

Figure: Generation procedure ?

Figure: Potential latent space

- How to sample form the latent space?
- The AutoEncoder was just trained to encode and decode the input data without information on its structure or distribution.
\Longrightarrow Need for a new framework

VAE - The Idea

- An autoencoder based model...

Figure: Simple autoencoder

- ... but where an input data point is encoded as a distribution defined over the latent space $[2,4]$

VAE - The Idea

- An autoencoder based model...

Figure: Simple autoencoder

- ... but where an input data point is encoded as a distribution defined over the latent space [2, 4]

Figure: VAE framework

VAE - Mathematical Considerations

- Let $x \in \mathcal{X}$ be a set of data and $\left\{P_{\theta}, \theta \in \Theta\right\}$ be a parametric model
- We assume there exists latent variables $z \in \mathcal{Z}$ living in a smaller space such that the marginal likelihood writes

- Example:

Objective:

- Maximizing the likelihood of the model

Problem: The integral is often intractable

VAE - Mathematical Considerations

- Let $x \in \mathcal{X}$ be a set of data and $\left\{P_{\theta}, \theta \in \Theta\right\}$ be a parametric model
- We assume there exists latent variables $z \in \mathcal{Z}$ living in a smaller space such that the marginal likelihood writes

$$
p_{\theta}(x)=\int p_{\theta}(x \mid z) q_{\text {prior }}(z) d z,
$$

where $q_{\text {prior }}$ is a prior distribution over the latent variables and $p_{\theta}(x \mid z)$ is referred to as the decoder

- Example:

- Maximizing the likelihood of the model

VAE - Mathematical Considerations

- Let $x \in \mathcal{X}$ be a set of data and $\left\{P_{\theta}, \theta \in \Theta\right\}$ be a parametric model
- We assume there exists latent variables $z \in \mathcal{Z}$ living in a smaller space such that the marginal likelihood writes

$$
p_{\theta}(x)=\int p_{\theta}(x \mid z) q_{\text {prior }}(z) d z
$$

where $q_{\text {prior }}$ is a prior distribution over the latent variables and $p_{\theta}(x \mid z)$ is referred to as the decoder

- Example:

$$
q_{\text {prior }}=\mathcal{N}(0, I), \quad p_{\theta}(x \mid z)=\prod_{i=1}^{D} \mathcal{B}\left(\pi_{\theta_{i}(z)}\right)
$$

- Maximizing the likelihood of the model

VAE - Mathematical Considerations

- Let $x \in \mathcal{X}$ be a set of data and $\left\{P_{\theta}, \theta \in \Theta\right\}$ be a parametric model
- We assume there exists latent variables $z \in \mathcal{Z}$ living in a smaller space such that the marginal likelihood writes

$$
p_{\theta}(x)=\int p_{\theta}(x \mid z) q_{\text {prior }}(z) d z
$$

where $q_{\text {prior }}$ is a prior distribution over the latent variables and $p_{\theta}(x \mid z)$ is referred to as the decoder

- Example:

$$
q_{\text {prior }}=\mathcal{N}(0, I), \quad p_{\theta}(x \mid z)=\prod_{i=1}^{D} \mathcal{B}\left(\pi_{\theta_{i}(z)}\right)
$$

Objective:

- Maximizing the likelihood of the model
\square

VAE - Mathematical Considerations

- Let $x \in \mathcal{X}$ be a set of data and $\left\{P_{\theta}, \theta \in \Theta\right\}$ be a parametric model
- We assume there exists latent variables $z \in \mathcal{Z}$ living in a smaller space such that the marginal likelihood writes

$$
p_{\theta}(x)=\int p_{\theta}(x \mid z) q_{\text {prior }}(z) d z
$$

where $q_{\text {prior }}$ is a prior distribution over the latent variables and $p_{\theta}(x \mid z)$ is referred to as the decoder

- Example:

$$
q_{\text {prior }}=\mathcal{N}(0, I), \quad p_{\theta}(x \mid z)=\prod_{i=1}^{D} \mathcal{B}\left(\pi_{\theta_{i}(z)}\right)
$$

Objective:

- Maximizing the likelihood of the model

Problem: The integral is often intractable.

Variational inference

We have to use Variational Inference:

$$
\begin{aligned}
\log p_{\theta}(x) & =\log \left(\int p_{\theta}(x \mid z) q_{\text {prior }}(z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) \frac{q(z)}{q(z)} d z\right), \text { for any pdf } q \\
& \geq \int\left(\log \frac{p_{\theta}(x, z)}{q(z)}\right) q(z) d z, \text { using Jensen's inequality } \\
& \geq \int\left(\log p_{\theta}(x, z)\right) q(z) d z-H(q(z))
\end{aligned}
$$

with H the entropy of $q(z)$.
The equality holds for $q(z)=p_{\theta}(z \mid x)$.

Variational inference

We have to use Variational Inference:

$$
\begin{aligned}
\log p_{\theta}(x) & =\log \left(\int p_{\theta}(x \mid z) q_{\text {prior }}(z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) \frac{q(z)}{q(z)} d z\right), \text { for any pdf } q \\
& \geq \int\left(\log \frac{p_{\theta}(x, z)}{q(z)}\right) q(z) d z, \text { using Jensen's inequality } \\
& \geq \int\left(\log p_{\theta}(x, z)\right) q(z) d z-H(q(z))
\end{aligned}
$$

with H the entropy of $q(z)$.
The equality holds for $q(z)=p_{\theta}(z \mid x)$.

Variational inference

We have to use Variational Inference:

$$
\begin{aligned}
\log p_{\theta}(x) & =\log \left(\int p_{\theta}(x \mid z) q_{\text {prior }}(z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) \frac{q(z)}{q(z)} d z\right), \text { for any pdf } q \\
& \geq \int\left(\log \frac{p_{\theta}(x, z)}{q(z)}\right) q(z) d z, \text { using Jensen's inequality } \\
& \geq \int\left(\log p_{\theta}(x, z)\right) q(z) d z-H(q(z))
\end{aligned}
$$

Variational inference

We have to use Variational Inference:

$$
\begin{aligned}
\log p_{\theta}(x) & =\log \left(\int p_{\theta}(x \mid z) q_{\text {prior }}(z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) \frac{q(z)}{q(z)} d z\right), \text { for any pdf } q \\
& \geq \int\left(\log \frac{p_{\theta}(x, z)}{q(z)}\right) q(z) d z, \text { using Jensen's inequality } \\
& \geq \int\left(\log p_{\theta}(x, z)\right) q(z) d z-H(q(z))
\end{aligned}
$$

Variational inference

We have to use Variational Inference:

$$
\begin{aligned}
\log p_{\theta}(x) & =\log \left(\int p_{\theta}(x \mid z) q_{\text {prior }}(z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) \frac{q(z)}{q(z)} d z\right), \text { for any pdf } q \\
& \geq \int\left(\log \frac{p_{\theta}(x, z)}{q(z)}\right) q(z) d z, \text { using Jensen's inequality } \\
& \geq \int\left(\log p_{\theta}(x, z)\right) q(z) d z-H(q(z))
\end{aligned}
$$

with H the entropy of $q(z)$.
The equality holds for $q(z)=p_{\theta}(z \mid x)$.

Variational inference

We have to use Variational Inference:

$$
\begin{aligned}
\log p_{\theta}(x) & =\log \left(\int p_{\theta}(x \mid z) q_{\text {prior }}(z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) d z\right) \\
& =\log \left(\int p_{\theta}(x, z) \frac{q(z)}{q(z)} d z\right), \text { for any pdf } q \\
& \geq \int\left(\log \frac{p_{\theta}(x, z)}{q(z)}\right) q(z) d z, \text { using Jensen's inequality } \\
& \geq \int\left(\log p_{\theta}(x, z)\right) q(z) d z-H(q(z))
\end{aligned}
$$

with H the entropy of $q(z)$.
The equality holds for $q(z)=p_{\theta}(z \mid x)$.

Variational inference: The ELBO

- Well-know issue: the posterior $q(z)=p_{\theta}(z \mid x)$ is intractable.
\longrightarrow use Expectation-Maximization algorithms (up to the MCMC-SAEM version)
- OR approximate this posterior \rightarrow ELBO
- Introduce a parametric approximation:
- This leads to an unbiased estimate of the log-likelihood

- and the definition of the Evidence Lower Bound (ELBO):

Variational inference: The ELBO

- Well-know issue: the posterior $q(z)=p_{\theta}(z \mid x)$ is intractable.
\longrightarrow use Expectation-Maximization algorithms (up to the MCMC-SAEM version)
- OR approximate this posterior \rightarrow ELBO
- Introduce a parametric approximation:

$$
q_{\phi}(z \mid x) \simeq p_{\theta}(z \mid x)
$$

where $q_{\phi}(z \mid x)=\mathcal{N}\left(\mu_{\phi}(x), \Sigma_{\phi}(x)\right)$

- This leads to an unbiased estimate of the log-likelihood

- and the definition of the Evidence Lower Bound (ELBO):

Variational inference: The ELBO

- Well-know issue: the posterior $q(z)=p_{\theta}(z \mid x)$ is intractable.
\longrightarrow use Expectation-Maximization algorithms (up to the MCMC-SAEM version)
- OR approximate this posterior \rightarrow ELBO
- Introduce a parametric approximation:

$$
q_{\phi}(z \mid x) \simeq p_{\theta}(z \mid x)
$$

where $q_{\phi}(z \mid x)=\mathcal{N}\left(\mu_{\phi}(x), \Sigma_{\phi}(x)\right)$

- This leads to an unbiased estimate of the log-likelihood

$$
\widehat{p_{\theta}}(x)=\frac{p_{\theta}(x, z)}{q_{\phi}(z \mid x)}, \quad \mathbb{E}_{z \sim q_{\phi}(z \mid x)}\left[\widehat{p_{\theta}}(x)\right]=p_{\theta}(x)
$$

- and the definition of the Evidence Lower Bound (ELBO):

Variational inference: The ELBO

- Well-know issue: the posterior $q(z)=p_{\theta}(z \mid x)$ is intractable.
\longrightarrow use Expectation-Maximization algorithms (up to the MCMC-SAEM version)
- OR approximate this posterior \rightarrow ELBO
- Introduce a parametric approximation:

$$
q_{\phi}(z \mid x) \simeq p_{\theta}(z \mid x)
$$

where $q_{\phi}(z \mid x)=\mathcal{N}\left(\mu_{\phi}(x), \Sigma_{\phi}(x)\right)$

- This leads to an unbiased estimate of the log-likelihood

$$
\widehat{p_{\theta}}(x)=\frac{p_{\theta}(x, z)}{q_{\phi}(z \mid x)}, \quad \mathbb{E}_{z \sim q_{\phi}(z \mid x)}\left[\widehat{p_{\theta}}(x)\right]=p_{\theta}(x)
$$

- and the definition of the Evidence Lower Bound (ELBO):

$$
\begin{aligned}
\log p_{\theta}(x) & \geq \mathbb{E}_{z \sim q_{\phi}(z \mid x)}\left[\log \left(p_{\theta}(x, z)\right)-\log \left(q_{\phi}(z \mid x)\right)\right] \\
& \geq E L B O
\end{aligned}
$$

Variational inference: The ELBO

$\underline{\text { Objective: }}$

1. Optimize the ELBO as a function instead of the target distribution Use stochastic gradient descent in both θ and ϕ

The Reparametrization Trick for stochastic gradient descent

- Since $z \sim \mathcal{N}\left(\mu_{\phi}(x), \Sigma_{\phi}(x)\right)$, the model is not amenable to gradient descent

(a) Back-propagation impossible

The Reparametrization Trick for stochastic gradient descent

- Since $z \sim \mathcal{N}\left(\mu_{\phi}(x), \Sigma_{\phi}(x)\right)$, the model is not amenable to gradient descent

(a) Back-propagation impossible

(b) Back-propagation possible
\Longrightarrow Optimization with respect to encoder and decoder parameters made possible ! Objective \Longrightarrow OK

The Reparametrization Trick for stochastic gradient descent

- Since $z \sim \mathcal{N}\left(\mu_{\phi}(x), \Sigma_{\phi}(x)\right)$, the model is not amenable to gradient descent

(a) Back-propagation impossible

(b) Back-propagation possible
\Longrightarrow Optimization with respect to encoder and decoder parameters made possible! Objective \Longrightarrow OK

Generating new samples

- We only need to sample $z \sim \mathcal{N}(0, I)$ and feed it to the decoder.

Figure: Generation procedure using prior

- Very simple to use in practice
- The prior and posterior are not expressive enough to capture complex distributions
- Poor latent space prospecting

Generating new samples

- We only need to sample $z \sim \mathcal{N}(0, I)$ and feed it to the decoder.

Figure: Generation procedure using prior

Pros:

- Very simple to use in practice
- The prior and posterior are not expressive enough to capture complex distributions
- Poor latent space prospecting

Generating new samples

- We only need to sample $z \sim \mathcal{N}(0, I)$ and feed it to the decoder.

Figure: Generation procedure using prior

Pros:

- Very simple to use in practice

Cons:

- The prior and posterior are not expressive enough to capture complex distributions
- Poor latent space prospecting

Defining a new framework

Assumptions:

- As of now the latent space structure was supposed to be Euclidean (i.e. $\mathcal{Z}=\mathbb{R}^{d}$)
- Let us now relax this hypothesis and assume that \mathcal{Z} is a Riemannian manifold endowed with a metric G.

Defining a new framework

Assumptions:

- As of now the latent space structure was supposed to be Euclidean (i.e. $\mathcal{Z}=\mathbb{R}^{d}$)
- Let us now relax this hypothesis and assume that \mathcal{Z} is a Riemannian manifold endowed with a metric \mathbf{G}.

Riemannian geometry principles

- Riemannian manifold: (reduced to our model) \mathbb{R}^{d} endowed with a metric \mathbf{G} : $\mathcal{M}=\left(\mathbb{R}^{d}, \mathbf{G}\right)$.
$\Longrightarrow \mathbb{R}^{d}$ not flat anymore, curved space (as montains)
- Length of a curve $\gamma:[0,1] \rightarrow \mathcal{M}$ from z_{1} to z_{2} living in a Riemannian manifold \mathcal{M}

- Geodesic paths $=$ curve γ minimizing Eq. (1)
- or equivalently minimizing the curve energy

Riemannian geometry principles

- Riemannian manifold: (reduced to our model) \mathbb{R}^{d} endowed with a metric \mathbf{G} :
$\mathcal{M}=\left(\mathbb{R}^{d}, \mathbf{G}\right)$.
$\Longrightarrow \mathbb{R}^{d}$ not flat anymore, curved space (as montains)
- Geodesic curves:
- Length of a curve $\gamma:[0,1] \rightarrow \mathcal{M}$ from z_{1} to z_{2} living in a Riemannian manifold \mathcal{M}

$$
\begin{align*}
L(\gamma) & =\int_{0}^{1} \sqrt{\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle_{\gamma(t)}} d t \quad \gamma(0)=z_{1}, \gamma(1)=z_{2} \\
& =\int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\top} \mathbf{G}(\gamma(t)) \gamma^{\prime}(t)} d t . \tag{1}
\end{align*}
$$

- Geodesic paths $=$ curve γ minimizing Eq. (1)
- or equivalently minimizing the curve energy

Riemannian geometry principles

- Riemannian manifold: (reduced to our model) \mathbb{R}^{d} endowed with a metric \mathbf{G} :
$\mathcal{M}=\left(\mathbb{R}^{d}, \mathbf{G}\right)$.
$\Longrightarrow \mathbb{R}^{d}$ not flat anymore, curved space (as montains)
- Geodesic curves:
- Length of a curve $\gamma:[0,1] \rightarrow \mathcal{M}$ from z_{1} to z_{2} living in a Riemannian manifold \mathcal{M}

$$
\begin{align*}
L(\gamma) & =\int_{0}^{1} \sqrt{\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle_{\gamma(t)}} d t \quad \gamma(0)=z_{1}, \gamma(1)=z_{2} \tag{1}\\
& =\int_{0}^{1} \sqrt{\gamma^{\prime}(t)^{\top} \mathbf{G}(\gamma(t)) \gamma^{\prime}(t)} d t .
\end{align*}
$$

- Geodesic paths = curve γ minimizing Eq. (1)
- or equivalently minimizing the curve energy

$$
E(\gamma)=\int_{0}^{1}\left\langle\gamma^{\prime}(t), \gamma^{\prime}(t)\right\rangle_{\gamma(t)} d t \quad \gamma(0)=z_{1}, \gamma(1)=z_{2} .
$$

Riemannian geometry principles

Figure: Image taken from: Fast Marching Methods on Triangulated Domains: Kimmel, R., and Sethian, J.A., Proceedings of the National Academy of Sciences, 95, pp. 8341-8435, 1998

Riemannian Gaussian Distribution

Given a Riemannian manifold \mathcal{M} endowed with the Riemannian metric \mathbf{G} and a chart z, an infinitesimal volume element may be defined on each tangent space T_{z} of the manifold \mathcal{M}

$$
\begin{equation*}
d \mathcal{M}_{z}=\sqrt{\operatorname{det} \mathbf{G}(z)} d z \tag{2}
\end{equation*}
$$

with $d z$ being the Lebesgue measure.
A Riemannian Gaussian distribution on \mathcal{M} can be defined using this canonical measure and the Riemannian distance.

Riemannian Gaussian Distribution

Given a Riemannian manifold \mathcal{M} endowed with the Riemannian metric \mathbf{G} and a chart z, an infinitesimal volume element may be defined on each tangent space T_{z} of the manifold \mathcal{M}

$$
\begin{equation*}
d \mathcal{M}_{z}=\sqrt{\operatorname{det} \mathbf{G}(z)} d z, \tag{2}
\end{equation*}
$$

with $d z$ being the Lebesgue measure.
A Riemannian Gaussian distribution on \mathcal{M} can be defined using this canonical measure and the Riemannian distance.

$$
\begin{equation*}
\mathcal{N}_{\text {riem }}(z \mid \sigma, \mu)=\frac{1}{C} \exp \left(-\frac{\operatorname{dist}_{\mathbf{G}}(z, \mu)^{2}}{2 \sigma}\right) \tag{3}
\end{equation*}
$$

So,
where \mathbf{G} is the constant Riemannian metric $\mathbf{G}(z)=\Sigma^{-1}, \forall z \in \mathcal{M}$

Riemannian Gaussian Distribution

Given a Riemannian manifold \mathcal{M} endowed with the Riemannian metric \mathbf{G} and a chart z, an infinitesimal volume element may be defined on each tangent space T_{z} of the manifold \mathcal{M}

$$
\begin{equation*}
d \mathcal{M}_{z}=\sqrt{\operatorname{det} \mathbf{G}(z)} d z, \tag{2}
\end{equation*}
$$

with $d z$ being the Lebesgue measure.
A Riemannian Gaussian distribution on \mathcal{M} can be defined using this canonical measure and the Riemannian distance.

$$
\begin{equation*}
\mathcal{N}_{\text {riem }}(z \mid \sigma, \mu)=\frac{1}{C} \exp \left(-\frac{\operatorname{dist}_{\mathbf{G}}(z, \mu)^{2}}{2 \sigma}\right) . \tag{3}
\end{equation*}
$$

So,

$$
\mathcal{N}(z \mid \mu, \boldsymbol{\Sigma})=\mathcal{N}_{\text {riem }}(z \mid \sigma=1, \mu),
$$

where \mathbf{G} is the constant Riemannian metric $\mathbf{G}(z)=\boldsymbol{\Sigma}^{-1}, \forall z \in \mathcal{M}$.

The Idea

The main idea is to see the posterior $q_{\phi}\left(z \mid x_{i}\right)=\mathcal{N}\left(\mu\left(x_{i}\right), \boldsymbol{\Sigma}\left(x_{i}\right)\right)$ as a Riemannian Gaussian distribution where the Riemannian distance is simply the distance with respect to the metric tensor $\boldsymbol{\Sigma}^{-1}\left(x_{i}\right)$.

$$
\mathbf{G}\left(\mu\left(x_{i}\right)\right)=\mathbf{\Sigma}^{-1}\left(x_{i}\right)
$$

\Longrightarrow Only defined at $\mu\left(x_{i}\right)$
Inspired from [1], we propose to build a smooth continuous Riemannian metric defined on the entire latent space as follows:

The Idea

The main idea is to see the posterior $q_{\phi}\left(z \mid x_{i}\right)=\mathcal{N}\left(\mu\left(x_{i}\right), \boldsymbol{\Sigma}\left(x_{i}\right)\right)$ as a Riemannian Gaussian distribution where the Riemannian distance is simply the distance with respect to the metric tensor $\boldsymbol{\Sigma}^{-1}\left(x_{i}\right)$.

$$
\mathbf{G}\left(\mu\left(x_{i}\right)\right)=\boldsymbol{\Sigma}^{-1}\left(x_{i}\right)
$$

\Longrightarrow Only defined at $\mu\left(x_{i}\right)$

Inspired from [1], we propose to build a smooth continuous Riemannian metric defined on the entire latent space as follows:

The Idea

The main idea is to see the posterior $q_{\phi}\left(z \mid x_{i}\right)=\mathcal{N}\left(\mu\left(x_{i}\right), \boldsymbol{\Sigma}\left(x_{i}\right)\right)$ as a Riemannian Gaussian distribution where the Riemannian distance is simply the distance with respect to the metric tensor $\boldsymbol{\Sigma}^{-1}\left(x_{i}\right)$.

$$
\mathbf{G}\left(\mu\left(x_{i}\right)\right)=\boldsymbol{\Sigma}^{-1}\left(x_{i}\right)
$$

\Longrightarrow Only defined at $\mu\left(x_{i}\right)$
Inspired from [1], we propose to build a smooth continuous Riemannian metric defined on the entire latent space as follows:

$$
\begin{align*}
& \mathbf{G}(z)=\sum_{i=1}^{N} \boldsymbol{\Sigma}^{-1}\left(x_{i}\right) \cdot \omega_{i}(z)+\lambda \cdot e^{-\tau\|z\|_{2}^{2}} \cdot I_{d}, \\
& \omega_{i}(z)=\exp \left(-\frac{\operatorname{dist}_{\boldsymbol{\Sigma}^{-1}\left(x_{i}\right)}\left(z, \mu\left(x_{i}\right)\right)^{2}}{\rho^{2}}\right), \tag{4}
\end{align*}
$$

where dist $\boldsymbol{\Sigma}^{-1}\left(x_{i}\right)\left(z, \mu\left(x_{i}\right)\right)^{2}=\left(z-\mu\left(x_{i}\right)\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(x_{i}\right)\left(z-\mu\left(x_{i}\right)\right)$.

Algorithm to Build the Metric

```
Algorithm 1 Building the metric from a trained model
    Input: A trained VAE model \(m\), the training dataset \(\mathcal{X}, \lambda, \tau\)
                                    \(\triangleright\) In practice \(\tau \approx 0\)
    for \(x_{i} \in \mathcal{X}\) do
        \(\mu_{i}, \boldsymbol{\Sigma}_{i}=m\left(x_{i}\right) \quad \triangleright\) Retrieve training embeddings and covariance matrices
    end for
    Select \(k\) centroids \(c_{i}\) in the \(\mu_{i} \quad \triangleright\) e.g. with \(k\)-medoids
    Get corresponding covariance matrices \(\boldsymbol{\Sigma}_{i}\)
\(\rho \leftarrow \max _{i} \min _{j \neq i}\left\|c_{i}-c_{j}\right\|_{2} \quad \triangleright\) Set \(\rho\) to the max distance between two closest neighbors
Build the metric using Eq. (17)
\[
\mathbf{G}(z)=\sum_{i=1}^{N} \boldsymbol{\Sigma}_{i}^{-1} \cdot \omega_{i}(z)+\lambda \cdot e^{-\tau\|z\|_{2}^{2}} \cdot I_{d}
\]
Return G
\(\triangleright\) Return G as a function
```

Building the metric from a trained model

A Riemannian Latent Space

Dashed lines represent affine interpolations while the solid ones show interpolations aiming at minimizing the potential $V(z)=(\sqrt{\operatorname{det} \mathbf{G}(z)})^{-1}$ all along the curve.

Learned latent space

(a) Distance map

(b) Distance Maps

New Sampling Procedure

Sampling for the intrinsic uniform Riemannian distribution Since the volume of the whole manifold $\mathcal{M}=\left(\mathbb{R}^{d}, \mathbf{G}\right)$ is finite, we can now define a uniform distribution on \mathcal{M}

Since the Riemannian metric has a closed form expression sampling from this distribution is quite easy and may be performed using the HMC sampler [3].

New Sampling Procedure

Sampling for the intrinsic uniform Riemannian distribution Since the volume of the whole manifold $\mathcal{M}=\left(\mathbb{R}^{d}, \mathbf{G}\right)$ is finite, we can now define a uniform distribution on \mathcal{M}

$$
\mathcal{U}_{\mathrm{Riem}}(z)=\frac{\sqrt{\operatorname{det} \mathbf{G}(z)}}{\int_{\mathbb{R}^{d}} \sqrt{\operatorname{det} \mathbf{G}(z) d z}} .
$$

Since the Riemannian metric has a closed form expression sampling from this distribution is quite easy and may be performed using the HMC sampler [3].

New Sampling Procedure

Sampling for the intrinsic uniform Riemannian distribution Since the volume of the whole manifold $\mathcal{M}=\left(\mathbb{R}^{d}, \mathbf{G}\right)$ is finite, we can now define a uniform distribution on \mathcal{M}

$$
\mathcal{U}_{\mathrm{Riem}}(z)=\frac{\sqrt{\operatorname{det} \mathbf{G}(z)}}{\int_{\mathbb{R}^{d}} \sqrt{\operatorname{det} \mathbf{G}(z) d z}} .
$$

Since the Riemannian metric has a closed form expression sampling from this distribution is quite easy and may be performed using the HMC sampler [3].

$$
\mathbf{G}(z)=\sum_{i=1}^{N} \boldsymbol{\Sigma}^{-1}\left(x_{i}\right) \cdot \omega_{i}(z)+\lambda \cdot e^{-\tau\|z\|_{2}^{2}} \cdot I_{d}
$$

Generation results

MODEL	MNIST (16)		SVHN (16)		CIFAR 10 (32)		CELEBA (64)	
	FID \downarrow	PRD \uparrow						
AE $-\mathcal{N}(0,1)$	46.41	$0.86 / 0.77$	119.65	$0.54 / 0.37$	196.50	$0.05 / 0.17$	64.64	$0.29 / 0.42$
WAE	20.71	$0.93 / 0.88$	49.07	$0.80 / \mathbf{0 . 8 5}$	132.99	$0.24 / 0.52$	54.56	$\mathbf{0 . 5 7 / 0 . 5 5}$
VAE $-\mathcal{N}(0,1)$	40.70	$0.83 / 0.75$	83.55	$0.69 / 0.55$	162.58	$0.10 / 0.32$	64.13	$0.27 / 0.39$
VAMP	34.02	$0.83 / 0.88$	91.98	$0.55 / 0.63$	198.14	$0.05 / 0.11$	73.87	$0.09 / 0.10$
HVAE	15.54	$0.97 / 0.95$	98.05	$0.64 / 0.68$	201.70	$0.13 / 0.21$	52.00	$0.38 / 0.58$
RHVAE	36.51	$0.73 / 0.28$	121.69	$0.55 / 0.41$	167.41	$0.12 / 0.22$	55.12	$0.45 / 0.56$
AE -GMM	9.60	$0.95 / 0.90$	54.21	$0.82 / 0.83$	130.28	$0.35 / 0.58$	56.07	$0.32 / 0.48$
RAE (GP)	9.44	$0.97 / \mathbf{0 . 9 8}$	61.43	$0.79 / 0.78$	120.32	$0.34 / 0.58$	59.41	$0.28 / 0.49$
RAE (L2)	9.89	$0.97 / \mathbf{0 . 9 8}$	58.32	$0.82 / 0.79$	123.25	$0.33 / 0.54$	54.45	$0.35 / 0.55$
RAE (SN)	11.22	$0.97 / \mathbf{0 . 9 8}$	95.64	$0.53 / 0.63$	114.59	$0.32 / 0.53$	55.04	$0.36 / 0.56$
RAE	11.23	$\mathbf{0 . 9 8 / \mathbf { 0 . 9 8 }}$	66.20	$0.76 / 0.80$	118.25	$0.35 / 0.57$	53.29	$0.36 / 0.58$
VAE - GMM	13.13	$\mathbf{0 . 9 5 / 0 . 9 2}$	52.32	$0.82 / \mathbf{0 . 8 5}$	138.25	$0.29 / 0.53$	55.50	$0.37 / 0.49$
VAE - OURS	$\mathbf{8 . 5 3}$	$\mathbf{0 . 9 8 / 0 . 9 7}$	$\mathbf{4 6 . 9 9}$	$\mathbf{0 . 8 4 / \mathbf { 0 . 8 5 }}$	$\mathbf{9 3 . 5 3}$	$\mathbf{0 . 7 1 / 0 . 6 8}$	$\mathbf{4 8 . 7 1}$	$0.44 / \mathbf{0 . 6 2}$

Generation results

Generation results

Generation samples

Generation results - Sampling Diversity

Recall the shape of the metric:

$$
\begin{aligned}
& \mathbf{G}(z)=\sum_{i=1}^{N} \boldsymbol{\Sigma}^{-1}\left(x_{i}\right) \cdot \omega_{i}(z)+\lambda \cdot e^{-\tau\|z\|_{2}^{2}} \cdot I_{d}, \\
& \omega_{i}(z)=\exp \left(-\frac{\operatorname{dist}_{\boldsymbol{\Sigma}^{-1}\left(x_{i}\right)}\left(z, \mu\left(x_{i}\right)\right)^{2}}{\rho^{2}}\right),
\end{aligned}
$$

where dist $\boldsymbol{\Sigma}^{-1}\left(x_{i}\right)\left(z, \mu\left(x_{i}\right)\right)^{2}=\left(z-\mu\left(x_{i}\right)\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(x_{i}\right)\left(z-\mu\left(x_{i}\right)\right)$.

Generation results - Sampling Diversity

Recall the shape of the metric:

$$
\begin{aligned}
& \mathbf{G}(z)=\sum_{i=1}^{N} \boldsymbol{\Sigma}^{-1}\left(x_{i}\right) \cdot \omega_{i}(z)+\lambda \cdot e^{-\tau\|z\|_{2}^{2}} \cdot I_{d}, \\
& \omega_{i}(z)=\exp \left(-\frac{\operatorname{dist}_{\boldsymbol{\Sigma}^{-1}\left(x_{i}\right)}\left(z, \mu\left(x_{i}\right)\right)^{2}}{\rho^{2}}\right),
\end{aligned}
$$

where $\operatorname{dist}_{\boldsymbol{\Sigma}^{-1}\left(x_{i}\right)}\left(z, \mu\left(x_{i}\right)\right)^{2}=\left(z-\mu\left(x_{i}\right)\right)^{\top} \boldsymbol{\Sigma}^{-1}\left(x_{i}\right)\left(z-\mu\left(x_{i}\right)\right)$.

Gen.	Near train	Near. rec.	Gen.	Near. train	Near. rec.	Gen.	Near. train	Near. rec.	Gen.	Near. train	Near rec.			
5	5	5	9	C	9	3	3	3	2	2	2	reconstruction vs. generation		
												FID	$\begin{gathered} \text { MNIST } \\ 11.27 \end{gathered}$	$\begin{gathered} \text { CELEBA } \\ 30.12 \end{gathered}$

Sampling diversity

Generation results - Sampling Diversity

Decoded centroid Nearest train image
Generated samples

Case with 2 centroids

Generation results - Influence of the number of centroids

Recall the shape of the metric:

$$
\mathbf{G}(z)=\sum_{i=1}^{N} \boldsymbol{\Sigma}^{-1}\left(x_{i}\right) \cdot \omega_{i}(z)+\lambda \cdot e^{-\tau\|z\|_{2}^{2}} \cdot I_{d}
$$

Generation results - Influence of λ

Recall the shape of the metric:

$$
\mathbf{G}(z)=\sum_{i=1}^{N} \boldsymbol{\Sigma}^{-1}\left(x_{i}\right) \cdot \omega_{i}(z)+\lambda \cdot e^{-\tau\|z\|_{2}^{2}} \cdot I_{d}
$$

Influence of λ

Generation results - Influence of the Number of Training Samples

Can the method benefit more recent models

Can the method be applied to more recent models and benefit them?

MODEL	GENERATION	MNIST	CELEBA
VAMP	PRIOR	34.5	67.2
	OURS	$\mathbf{3 2 . 7}$	$\mathbf{6 0 . 9}$
IWAE	PRIOR	$\mathbf{3 2 . 4}$	67.6
	OURS	33.8	$\mathbf{6 0 . 3}$
AAE	PRIOR	19.1	64.8
	OURS	$\mathbf{1 1 . 7}$	$\mathbf{5 1 . 4}$
VAEGAN	PRIOR	8.7	39.7
	OURS	$\mathbf{6 . 1}$	$\mathbf{3 1 . 4}$

Method applied to more recent models

Interested in VAEs ?

Check out Pythae, a Python library that unifies Generative Autoencoder implementations in Python.

Pypl package 0.0 .8 python $3.713 .813 .9+$ docs pasmal license Apache 20
 code style black codecov gex: co Open in Colab

Documentation

pythae

This library implements some of the most common (Variational) Autoencoder models under a unified implementation. In particular, it provides the possibility to perform benchmark experiments and comparisons by training the models with the same autoencoding neural network architecture. The feature make your own autoencoder allows you to train any of these models with your own data and own Encoder and Decoder neural networks. It integrates experiment monitoring tools such wandb and mlflow \backslash and allows model sharing and loading from the HuggingFace Hub \mathbb{B}_{3} in a few lines of code.

Quick access:

- Installation
- Implemented models / Implemented samplers
- Reproducibility statement / Results flavor
- Model training / Data generation / Custom network architectures
- Model sharing with e Hub / Experiment tracking with wandb / Experiment tracking with mlflow
- Tutorials / Documentation
- Contributing $\boldsymbol{z} / /$ Issues \nless
- Citing this repository

Interested in VAEs ?

GAE Model	Pythae model
Autoencoder	AE
Variational Autoencoder	VAE
Beta Variational Autoencoder	BetaVAE
VAE with Linear Normalizing Flows	VAE_LinNF
VAE with Inverse Autoregressive Flows	VAE_IAF
Disentangled β-VAE	DisentangledBetaVAE
Disentangling by Factorising	FactorVAE
Beta-TC-VAE	BetaTCVAE
Importance Weighted Autoencoder	IWAE
Multiply Importance Weighted Autoencoder	MIWAE
Partially Importance Weighted Autoencoder	PIWAE
Combination Importance Weighted Autoencoder	CIWAE
VAE with perceptual metric similarity	MSSSIM_VAE
Wasserstein Autoencoder	WAE
Info Variational Autoencoder	INFOVAE_MMD
VAMP Autoencoder	VAMP
Hyperspherical VAE	SVAE
Poincaré Disk VAE	PoicaréVAE
Adversarial Autoencoder	Adversarial_AE
Variational Autoencoder GAN	VAEGAN
Vector Quantized VAE	VQVAE
Hamiltonian VAE	HVAE
Regularized AE with L2 decoder param	RAE_L2
Regularized AE with gradient penalty	RAE_GP
Riemannian Hamiltonian VAE	RHVAE

Pythae - Resources

Github: https://github.com/clementchadebec/benchmark_VAE Online documentation: https://pythae.readthedocs.io/en/latest/ Pypi project page: https://pypi.org/project/pythae/ Open to contributors!

```
O-
pip install pythae
```


Thank you

Thank you!

Code of the paper:
https://github.com/clementchadebec/geometric_perspective_on_vaes

Code for Pythae: https://github.com/clementchadebec/benchmark_VAE

Bibliography

[1] Søren Hauberg, Oren Freifeld, and Michael Black. A Geometric take on Metric Learning. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/ ec5aa0b7846082a2415f0902f0da88f2-Paper.pdf.
[2] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114 [cs, stat], 2014.
[3] Radford M Neal. Hamiltonian importance sampling. In talk presented at the Banff International Research Station (BIRS) workshop on Mathematical Issues in Molecular Dynamics, 2005.
[4] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In International conference on machine learning, pages 1278-1286. PMLR, 2014.

