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Variational Autoencoder - The Idea Autoencoder

Autoencoder

The objective =⇒ Dimensionnality Reduction

Figure: Simple Autoencoder

Need for a representation of the image =⇒ vectors
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Variational Autoencoder - The Idea Autoencoder

AutoEncoder

Assumptions:

Let x ∈ X be a set a data. We assume that there exists z ∈ Z such that z is
a low dimensional representation of x

The encoder eθ and decoder dϕ are functions modelled by neural networks
(NNs) such that θ and ϕ are the weights of the NNs

Let x′ be the reconstructed samples, the objective is to have x ≃ x′

The Objective function writes:

L = ∥x− x′∥2 = ∥x− dϕ(z)∥2 = ∥x− dϕ(eθ(x))∥2

=⇒ The networks are optimised using stochastic gradient descent

ϕ← ϕ− ε · ∇ϕL
θ ← θ − ε · ∇θL
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Variational Autoencoder - The Idea Autoencoder

AutoEncoder - Shortcomings

How to generate new data ?

Figure: Generation procedure ?

Figure: Potential latent space

How to sample form the latent space?

The AutoEncoder was just trained to encode and decode the input data
without information on its structure or distribution.

=⇒ Need for a new framework
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Variational Autoencoder - The Idea VAE framework

VAE - The Idea

An autoencoder based model...

Figure: Simple autoencoder

... but where an input data point is encoded as a distribution defined over
the latent space [2, 4]

Figure: VAE framework
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Variational Autoencoder - The Idea Mathematical foundations

VAE - Mathematical Considerations

Let x ∈ X be a set of data and {Pθ, θ ∈ Θ} be a parametric model

We assume there exists latent variables z ∈ Z living in a smaller space such
that the marginal likelihood writes

pθ(x) =

∫
pθ(x|z)qprior(z)dz ,

where qprior is a prior distribution over the latent variables and pθ(x|z) is
referred to as the decoder

Example:

qprior = N (0, I), pθ(x|z) =
D∏
i=1

B(πθi(z))

Objective:

Maximizing the likelihood of the model

Problem: The integral is often intractable.
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Variational Autoencoder - The Idea Mathematical foundations

Variational inference

We have to use Variational Inference:

log pθ(x) = log

(∫
pθ(x|z)qprior(z)dz

)
= log

(∫
pθ(x, z)dz

)
= log

(∫
pθ(x, z)

q(z)

q(z)
dz

)
, for any pdf q

≥
∫ (

log
pθ(x, z)

q(z)

)
q(z)dz , using Jensen’s inequality

≥
∫

(log pθ(x, z)) q(z)dz −H(q(z))

with H the entropy of q(z).

The equality holds for q(z) = pθ(z|x).
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Variational Autoencoder - The Idea Mathematical foundations

Variational inference: The ELBO

Well-know issue: the posterior q(z) = pθ(z|x) is intractable.
−→ use Expectation-Maximization algorithms (up to the MCMC-SAEM
version)

OR approximate this posterior → ELBO

Introduce a parametric approximation:

qϕ(z|x) ≃ pθ(z|x) ,

where qϕ(z|x) = N (µϕ(x),Σϕ(x))

This leads to an unbiased estimate of the log-likelihood

p̂θ(x) =
pθ(x, z)

qϕ(z|x)
, Ez∼qϕ(z|x)[p̂θ(x)] = pθ(x) ,

and the definition of the Evidence Lower Bound (ELBO):

log pθ(x) ≥ Ez∼qϕ(z|x)[log(pθ(x, z))− log(qϕ(z|x))]
≥ ELBO
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Variational Autoencoder - The Idea Mathematical foundations

Variational inference: The ELBO

Objective:

1. Optimize the ELBO as a function instead of the target distribution

Use stochastic gradient descent in both θ and ϕ
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Variational Autoencoder - The Idea Mathematical foundations

The Reparametrization Trick for stochastic gradient
descent

Since z ∼ N (µϕ(x),Σϕ(x)), the model is not amenable to gradient descent

(a) Back-propagation impossible

=⇒

(b) Back-propagation possible

=⇒ Optimization with respect to encoder and decoder parameters made possible !

Objective =⇒ OK
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Variational Autoencoder - The Idea Mathematical foundations

Generating new samples

We only need to sample z ∼ N (0, I) and feed it to the decoder.

Figure: Generation procedure using prior

Pros:

Very simple to use in practice

Cons:

The prior and posterior are not expressive enough to capture complex
distributions

Poor latent space prospecting
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Toward a Geometric Perspective on VAEs Some Elements of Riemannian Geometry

Defining a new framework

Assumptions:

As of now the latent space structure was supposed to be Euclidean (i.e.
Z = Rd)

Let us now relax this hypothesis and assume that Z is a Riemannian
manifold endowed with a metric G.
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Toward a Geometric Perspective on VAEs Some Elements of Riemannian Geometry

Riemannian geometry principles

Riemannian manifold: (reduced to our model) Rd endowed with a metric G:
M = (Rd,G).
=⇒ Rd not flat anymore, curved space (as montains)
Geodesic curves:

Length of a curve γ : [0, 1] → M from z1 to z2 living in a Riemannian
manifold M

L(γ) =

1∫
0

√
⟨γ′(t), γ′(t)⟩γ(t)dt γ(0) = z1, γ(1) = z2

=

1∫
0

√
γ′(t)⊤G(γ(t))γ′(t)dt .

(1)

Geodesic paths = curve γ minimizing Eq. (1)
or equivalently minimizing the curve energy

E(γ) =

1∫
0

⟨γ′(t), γ′(t)⟩γ(t)dt γ(0) = z1, γ(1) = z2 .
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Toward a Geometric Perspective on VAEs Some Elements of Riemannian Geometry

Riemannian geometry principles

Figure: Image taken from: Fast Marching Methods on Triangulated Domains : Kimmel, R., and
Sethian, J.A., Proceedings of the National Academy of Sciences, 95, pp. 8341-8435, 1998
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Toward a Geometric Perspective on VAEs Some Elements of Riemannian Geometry

Riemannian Gaussian Distribution

Given a Riemannian manifoldM endowed with the Riemannian metric G and a
chart z, an infinitesimal volume element may be defined on each tangent space Tz

of the manifoldM
dMz =

√
detG(z)dz , (2)

with dz being the Lebesgue measure.

A Riemannian Gaussian distribution onM can be defined using this canonical
measure and the Riemannian distance.

Nriem(z|σ, µ) =
1

C
exp

(
− distG(z, µ)2

2σ

)
. (3)

So,
N (z|µ,Σ) = Nriem(z|σ = 1, µ) ,

where G is the constant Riemannian metric G(z) = Σ−1, ∀z ∈M.
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Toward a Geometric Perspective on VAEs A Geometric view of the Model

The Idea

The main idea is to see the posterior qϕ(z|xi) = N (µ(xi),Σ(xi)) as a
Riemannian Gaussian distribution where the Riemannian distance is simply the
distance with respect to the metric tensor Σ−1(xi).

G(µ(xi)) = Σ−1(xi) .

=⇒ Only defined at µ(xi)

Inspired from [1], we propose to build a smooth continuous Riemannian metric
defined on the entire latent space as follows:

G(z) =

N∑
i=1

Σ−1(xi) · ωi(z) + λ · e−τ∥z∥2
2 · Id ,

ωi(z) = exp

(
− distΣ−1(xi)(z, µ(xi))

2

ρ2

)
,

(4)

where distΣ−1(xi)(z, µ(xi))
2 = (z − µ(xi))

⊤Σ−1(xi)(z − µ(xi)).
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where distΣ−1(xi)(z, µ(xi))
2 = (z − µ(xi))

⊤Σ−1(xi)(z − µ(xi)).
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Algorithm to Build the Metric

Building the metric from a trained model
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A Riemannian Latent Space

Dashed lines represent affine interpolations while the solid ones show interpolations
aiming at minimizing the potential V (z) = (

√
detG(z))−1 all along the curve.

Learned latent space
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New Sampling Procedure

Sampling for the intrinsic uniform Riemannian distribution Since the volume
of the whole manifoldM = (Rd,G) is finite, we can now define a uniform
distribution onM

URiem(z) =

√
detG(z)∫

Rd

√
detG(z)dz

.

Since the Riemannian metric has a closed form expression sampling from this
distribution is quite easy and may be performed using the HMC sampler [3].

G(z) =

N∑
i=1

Σ−1(xi) · ωi(z) + λ · e−τ∥z∥2
2 · Id ,
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Generation results

Generation results
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Generation results

Generation samples
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Generation results - Sampling Diversity

Recall the shape of the metric:

G(z) =

N∑
i=1

Σ−1(xi) · ωi(z) + λ · e−τ∥z∥2
2 · Id ,

ωi(z) = exp

(
− distΣ−1(xi)(z, µ(xi))

2

ρ2

)
,

where distΣ−1(xi)(z, µ(xi))
2 = (z − µ(xi))

⊤Σ−1(xi)(z − µ(xi)).

Sampling diversity
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Generation results - Sampling Diversity

Case with 2 centroids
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Generation results - Influence of the number of centroids

Recall the shape of the metric:

G(z) =

N∑
i=1

Σ−1(xi) · ωi(z) + λ · e−τ∥z∥2
2 · Id ,

Influence of the centroids
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Generation results - Influence of λ

Recall the shape of the metric:

G(z) =

N∑
i=1

Σ−1(xi) · ωi(z) + λ · e−τ∥z∥2
2 · Id ,

Influence of λ
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Generation results - Influence of the Number of Training
Samples

Influence of the number of training samples (FID)
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Can the method benefit more recent models

Can the method be applied to more recent models and benefit them?

Method applied to more recent models
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Some Resources on VAE

Interested in VAEs ?

Check out Pythae, a Python library that unifies Generative Autoencoder
implementations in Python.
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Pythae - Resources

✓ Github: https://github.com/clementchadebec/benchmark_VAE

✓ Online documentation: https://pythae.readthedocs.io/en/latest/

✓ Pypi project page: https://pypi.org/project/pythae/

✓ Open to contributors!
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Thank you

Thank you!

Code of the paper:
https://github.com/clementchadebec/geometric_perspective_on_vaes

Code for Pythae: https://github.com/clementchadebec/benchmark_VAE
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