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*Université de Paris - INRIA (HeKA team) - INSERM
†Equipe Aramis - Institut du Cerveau

May 30, 2021

1 / 57



Overview

1 Introduction

2 VAE framework
The idea
Mathematical foundations

3 Toward a Geometry-Aware VAE
The framework
The proposed model
A new way to generate data
Sensitivities and robustness on toy data

4 Results on Neuroimaging data
Materials
Methods
Results

2 / 57



Main Challenges

Main challenges with medical data

Small data sets:

potential poor subject variability
no statistically significant results
overfitting

Large data (e.g. fMRI) =⇒ thousands of dimensions

Need for

Data augmentation

Dimensionality reduction

A solution ?

Variational Autoecoders

Issue

Unable to generate faithfully with small data sets
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Classic Data Augmentation

Adding some geometric transformations (shift, rotations ...)

Adding noise, blur ...

Original

Zoom Contrast change Rotation Gaussian noise Blur

Figure: Examples of transformations
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Classic Data Augmentation - Shortcomings

Classic DA

Is data set dependent

May require the intervention of an expert “knowledge”

Figure: Nine figure rotated.

An attractive solution ?

Generative models (Generative Adversarial Networks, Variational
Auto-Encoders ...)
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Use of Generative Models for DA

GANs have already seen a wide use in many fields of application including
medicine [YWB19]:

Magnetic Resonance Images (MRI) [STR+18, CMST17]

Computed Tomography (CT) [FADK+18, SYPS19]

X-ray [MMKSM18, SVD+18, WGG+20],

Positron Emission Tomography (PET) [BKK+17],

Mass spectroscopy data [LZL+19],

Dermoscopy [BAN18]

Mammography [KRO+18, WWCL18]

=⇒ Most of these studies involved either a quite large training set (above 1000
training samples) or quite small dimensional data.

=⇒ As of today, the HDLSS setting remains poorly explored.

=⇒ Use VAEs!
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VAE - The Idea

An auto-encoder based model...

Figure: Simple Auto-Encoder

... but where an input data point is encoded as a distribution defined over
the latent space [KW14, RMW14]

Figure: VAE framework
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VAE - Mathematical Considerations

Let x ∈ X be a set of data and {Pθ, θ ∈ Θ} a parametric model

We assume there exists latent variables z ∈ Z living in a smaller space such
that the marginal likelihood writes

pθ(x) =

∫
pθ(x |z)qprior(z)dz ,

where qprior is a prior distribution over the latent variables and pθ(x |z) is
referred to as the decoder

qprior = N (0, I ), pθ(x |z) =
D∏
i=1

B(πθi (z))

Objective:

Maximizing the likelihood of the model

Problem:

The integral is often intractable making pθ(z |x) =
pθ(x|z)qprior(z)

pθ(x) intractable

=⇒ Bayesian Inference is unusable
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The ELBO

We have to use Variational Inference

qφ(z |x) ' pθ(z |x) ,

where qφ(z |x) = N (µφ(x),Σφ(x))

This leads to an unbiased estimate of the log-likelihood

p̂θ(x) =
pθ(x , z)

qφ(z |x)
, Ez∼qφ(z|x)[p̂θ(x)] = pθ(x) ,

Taking the logarithm of the expectation we have

log pθ(x) = logEz∼qφ(z|x)[p̂θ(x)]

≥ Ez∼qφ(z|x)[log(p̂θ(x))]

≥ Ez∼qφ(z|x)[log(pθ(x , z))− log(qφ(z |x))]

≥ ELBO
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The Reparametrization Trick

Since z ∼ N (µφ(x),Σφ(x)), the model is not amenable to gradient descent

(a) Back-propagation impossible

=⇒

(b) Back-propagation possible

=⇒ Optimization with respect to encoder and decoder parameters made possible !
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Generating new samples

We only need to sample z ∼ N (0, I ) and feed it to the decoder.

Figure: Generation procedure

Pros:

Very simple to use in practice

Cons:

The prior and posterior are not expressive enough to capture complex
distributions

Poor latent space prospecting

11 / 57



Defining a New Framework

Assumptions:

As of now the latent space structure was supposed to be Euclidean (i.e.
Z = Rd)

Let us now relax this hypothesis and assume that Z is a Riemannian
manifold endowed with a metric G.

It was shown that exploiting the geometrical aspect of probability
distributions can lead to far more efficient sampling [GCC09, GC11]

Our ideas:

1 Exploit the manifold structure of the latent space to improve the posterior
sampling [CMA20]

2 Learn the metric defined in the latent space [CMA20]

3 Use the learned geometry to generate instead of the prior [CTSBA21]
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1) Improve Posterior Sampling - Riemannian HMC

The idea relies on the Riemannian Hamiltonian Monte Carlo Sampler [GC11]

Simulates the evolution (z(t), v(t)) of a particle whose motion is governed by
Hamiltonian dynamics and having a potential U(z) and kinetic energy K (v , z)

U(z) = − log ptarget(z), K (v , z) =
1

2
v>G−1(z)v .

Use of the “Generalized” Leapfrog integrator to sample from ptarget

The target density ptarget is proportional to the true posterior:

pθ(z |x) =
pθ(x , z)

pθ(x)
∝ pθ(x , z) = p(x |z)p(z) = ptarget(z) .

Pros:

Posterior sampling is guided by the gradient of the true posterior

Use the underlying geometry of the data to improve sampling

Cons:

The metric is unknown
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2) Learn the Metric - The Choice of the Metric

We propose to parametrize the metric as follows [Lou19]:

G−1(z) =
N∑
i=1

LψiL
>
ψi

exp
(
− ‖z − ci‖2

2

T 2

)
+ λId ,

Lψi are lower triangular matrices parametrized using neural networks

T is a temperature to smooth the metric

ci are the centroids

λ is a regularization factor

Pros:

Closed-form expression of the inverse metric =⇒ useful for geodesic
computation

Metric volume element
√

det G(z) easily scalable through λ =⇒ geodesics
travel through most populated areas
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The Model - Riemannian Hamiltonian VAE

The graphical scheme

Figure: Riemannian Hamiltonian VAE.
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The Learned Latent Space
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The Learned Latent Space
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3) Improve Data Generation - Sample With the Metric

Idea:

Our idea is to use a geometry-based sampling procedure

p(z) =
ρS(z)

√
det G−1(z)∫

Rd

ρS(z)
√

det G−1(z)dz
,

where S is a compact set and ρS(z) = 1 if z ∈ S , 0 otherwise.

Use of classic MCMC sampler (e.g. Hamiltonian Monte Carlo)

Pros:

G−1 easily computable

Samples “close” to the data
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Sampling Comparison

(a) VAE - N (0, I )
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Sampling Comparison - Higher Dimension

(a) reduced MNIST (120) (b) reduced EMNIST (120) (c) reduced Fashion (120)
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Data Augmentation

Data Augmentation
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Data Augmentation - Framework

In
pu

t
da

ta

VAE
modelTrain

Test

CNN model
(training)

Synthetic
data

Validation

CNN model
(trained)

Figure: Data Augmentation framework
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Data Augmentation

1. Toy Data

2. Medical Imaging
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Robustness Across Data Sets

Table: Classification results on reduced data sets (∼ 50 samples per class)

MNIST
MNIST EMNIST

FASHION
(unbal.) (unbal.)

Baseline 89.9± 0.6 81.5± 0.7 82.6± 1.4 76.0± 1.5
Baseline + Synthetic

Basic Augmentation (X5) 92.8± 0.4 86.5± 0.9 85.6± 1.3 77.5± 2.0
Basic Augmentation (X10) 88.2± 2.2 82.0± 2.4 85.7± 0.3 79.2± 0.6
Basic Augmentation (X15) 92.8± 0.7 85.8± 3.4 86.6± 0.8 80.0± 0.5

VAE - 200∗ 88.5± 0.9 84.0± 2.0 81.7± 3.0 78.6± 0.4
VAE - 2k∗ 92.2± 1.6 88.0± 2.2 86.0± 0.2 79.3± 1.1
Ours-200 91.0± 1.0 84.1± 2.0 85.1± 1.1 77.0± 0.8
Ours-500 92.3± 1.1 87.7± 0.9 85.1± 1.1 78.5± 0.9
Ours-1k 93.2± 0.8 89.7 ± 0.8 87.0± 1.0 80.2 ± 0.8
Ours-2k 94.3 ± 0.8 89.1± 1.9 87.6 ± 0.8 78.1± 1.8

* Using a standard normal prior to generate

Classic DA is data set dependent

Vanilla VAE performs as well as classic DA
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Robustness Across Data Sets

Table: Classification results on reduced data sets (∼ 50 samples per class) on synthetic
samples only

MNIST
MNIST EMNIST

FASHION
(unbal.) (unbal.)

Baseline 89.9± 0.6 81.5± 0.7 82.6± 1.4 76.0± 1.5
Synthetic Only

VAE - 200∗ 69.9± 1.5 64.6± 1.8 65.7± 2.6 73.9± 3.0
VAE - 2k∗ 86.5± 2.2 79.6± 3.8 78.8± 3.0 76.7± 1.6
Ours-200 87.2± 1.1 79.5± 1.6 77.0± 1.6 77.0± 0.8
Ours-500 89.1± 1.3 80.4± 2.1 80.2± 2.0 78.5± 0.8
Ours-1k 90.1± 1.4 86.2± 1.8 82.6± 1.3 79.3± 0.6
Ours-2k 92.6± 1.1 87.5± 1.3 86.0± 1.0 78.3± 0.9

* Using a standard normal prior to generate

The proposed model seems to create diverse samples relevant to the classifier
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Robustness Across Classifiers
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A Note on the Method Scalability
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Figure: Benchmark classifier accuracy according to the number of samples in the training
set on MNIST.
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Data Augmentation

1. Toy Data

2. Medical Imaging
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Datasets

Classification task: Alzheimer’s disease patients (AD) vs Cognitively Normal
participants (CN) using T1-weighted MR images.

Table: Summary of participant demographics, mini-mental state examination (MMSE)
and global clinical dementia rating (CDR) scores at baseline.

Data set Label Obs. Age Sex M/F MMSE CDR

ADNI
CN 403 73.3± 6.0 185/218 29.1± 1.1 0: 403
AD 362 74.9± 7.9 202/160 23.1± 2.1 0.5: 169, 1: 192, 2: 1

AIBL
CN 429 73.0± 6.2 183/246 28.8± 1.2 0: 406, 0.5: 22, 1: 1
AD 76 74.4± 8.0 33/43 20.6± 5.5 0.5: 31, 1: 36, 2: 7, 3: 2
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MRI preprocessing

Bias field correction (N4ITK) + linear registration (ANTS) + cropping

Figure: Preprocessed MRI used in the study

Find wonderful data at:
/network/lustre/dtlake01/aramis/datasets/adni/caps/caps_v2021
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Evaluation procedure
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Evaluation procedure
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Evaluation procedure
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CNN architectures

Baseline architectures provided by a previous study [WTSDM+20]
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CNN architectures

Optimized architectures found with random search procedure (ClinicaDL)
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Experiments

Four series of experiments:

baseline architecture on train-50

baseline architecture on train-full

optimized architecture on train-50

optimized architecture on train-full

For each experiment 20 CNNs are run and the performance is the mean value of
the 20 performance values.
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Synthesized images

Figure: Example of two true patients compared to two generated by our method. Can
you find the intruders ?
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Synthesized images

Figure: Example of two true patients compared to two generated by our method. Can
you find the intruders ?
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Results on train-50 with baseline CNN

Table: Mean test performance of each series of 20 runs trained with the baseline
hyperparameters on train-50 set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 66.3 ± 2.4 67.2 ± 4.1
real (high-resolution) 67.9 ± 2.3 66.5 ± 3.0

500 synthetic + real 69.4 ± 1.6 68.5 ± 2.5
1000 synthetic + real 70.5 ± 2.1 70.6 ± 3.1
2000 synthetic + real 71.2 ± 1.6 72.8 ± 2.2
3000 synthetic + real 72.6 ± 1.6 73.6 ± 3.0
5000 synthetic + real 74.1 ± 2.2 76.1± 3.6

10000 synthetic + real 74.0 ± 2.7 74.9 ± 3.2

Increase of balanced accuracy of 6.2 points on ADNI and 8.9 points on AIBL
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Results on train-full with baseline CNN

Table: Mean test performance of each series of 20 runs trained with the baseline
hyperparameters on train-full set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 77.7 ± 2.5 78.4 ± 2.4
real (high-resolution) 80.6 ± 1.1 80.4 ± 2.6

500 synthetic + real 82.2 ± 2.4 82.9 ± 2.5
1000 synthetic + real 84.4 ± 1.8 83.7 ± 2.3
2000 synthetic + real 85.9 ± 1.6 83.8 ± 2.2
3000 synthetic + real 85.8 ± 1.7 84.4 ± 1.8
5000 synthetic + real 85.7 ± 2.1 84.2 ± 2.2

10000 synthetic + real 86.3± 1.8 85.1± 1.9

Increase of balanced accuracy of 5.7 points on ADNI and 4.7 on AIBL
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Results on train-50 with optimized CNN

Table: Mean test performance of each series of 20 runs trained with the optimized
hyperparameters on train-50 set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 75.5 ± 2.7 75.6 ± 4.1
real (high-resolution) 72.1 ± 3.1 71.2 ± 5.1

500 synthetic + real 75.6 ± 2.5 76.0 ± 4.2
1000 synthetic + real 77.8 ± 2.3 80.9 ± 3.2
2000 synthetic + real 76.9 ± 2.4 80.0 ± 3.6
3000 synthetic + real 77.8 ± 1.9 81.2 ± 3.7
5000 synthetic + real 76.9 ± 2.5 80.9 ± 2.7

10000 synthetic + real 78.0±2.1 81.9±2.2

Increase of balanced accuracy of 2.5 points on ADNI and 6.3 points on AIBL
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Results on train-full with optimized CNN

Table: Mean test performance of each series of 20 runs trained with the optimized
hyperparameters on train-full set.

data set
ADNI AIBL

balanced accuracy balanced accuracy

real 85.5 ± 2.4 81.9 ± 3.2
real (high-resolution) 85.7 ± 2.5 84.4 ± 1.7

500 synthetic + real 86.0 ± 1.8 83.2 ± 2.4
1000 synthetic + real 86.5 ± 1.9 83.7 ± 2.0
2000 synthetic + real 87.2±1.7 84.0 ± 2.0
3000 synthetic + real 85.8 ± 2.6 83.6 ± 3.2
5000 synthetic + real 86.4 ± 1.3 83.5 ± 2.2

10000 synthetic + real 86.7 ± 1.8 84.3±1.8

Increase of balanced accuracy of 1.5 point on ADNI and -0.1 point on AIBL
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Conclusion

Validation of a new VAE-based data augmentation framework on classification
tasks on toy and real-life data sets.

Strengths:

Data set generalization from 2D images (MNIST, EMNIST, FASHION) to
3D medical images (ADNI and AIBL),

Classifier independence MLP, random forest, k-NN and SVM (on toy data
sets) ; baseline and optimized parameters (on medical images).

Synthetic data relevance classifiers achieved a similar or better classification
performance when trained only on synthetic data than on the real train set.

Low sample size data sets usability adding synthetic data improves
classification performance even with a small training set (train-50)
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Conclusion

Validation of a new VAE-based data augmentation framework on classification
tasks on toy and real-life data sets.

Limitations - what could be improved:

no extensive search on VAE hyperparameters.

can it be easily coupled with other techniques to limit overfitting?

would it benefit from the use of longitudinal data?

train-50 is still large compared to some medical data sets. . .
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The End

Thank you !
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Appendices

Appendices

46 / 57



Clustering

True labels
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Figure: Euclidean and Riemannian k-medoids custering.
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Results - Clustering

Data set Model Subset 1 Subset 2 Subset 3 Mean

Synthetic data
linear 53.88 62.52 71.63 62.68

geodesic 71.41 81.39 79.49 77.43

MNIST 1
linear 89.73 93.11 91.80 91.55

geodesic 91.68 94.51 95.63 93.94

MNIST 2
linear 68.24 69.22 79.05 71.17

geodesic 70.35 71.34 79.64 73.78

MNIST 3
linear 75.55 75.76 81.70 77.67

geodesic 76.08 77.94 81.96 78.66

FashionMNIST 1
linear 90.47 91.63 86.78 89.63

geodesic 91.44 92.55 87.46 90.48

FashionMNIST 2
linear 92.20 91.26 93.30 92.25

geodesic 93.56 91.80 94.12 93.16

FashionMNIST 3
linear 72.46 79.58 83.16 78.40

geodesic 74.89 81.88 84.83 80.53

Table: F1-Scores.
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Tweaking the Approximate Posterior

The ELBO can written as

ELBO = log pθ(x)−KL(qφ(z |x)||pθ(z |x))︸ ︷︷ ︸
≈0 if qφ(z|x)≈pθ(z|x)

.

Since the Kullback-Leiber divergence is always non-negative, the objective is
to try to make it vanish by tweaking the approximate posterior qφ(z |x)

The idea is to add some Markov Chain Monte Carlo steps targeting the true
posterior pθ(z |x)[SKW15]

How to ensure that the model would still be amenable to the
back-propagation ?
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Normalizing Flows

The idea is to use smooth invertible parametrized mappings fψ to “sample” z
[RM15]

K transformations are then applied to a latent variable z0 drawn from an
initial distribution q (here q = qφ) leading to a final random variable
zK = f Kx ◦ · · · ◦ f 1

x (z0) whose density writes

qφ(zK |x) = qφ(z0|x)
K∏

k=1

| det Jf kx |
−1 , (1)
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Riemannian Hamiltonian VAE

The idea relies on the Riemannian Hamiltonian Monte Carlo Sampler [GC11]

We define a target density π:

pθ(x |z) =
pθ(x , z)

pθ(x)
∝ pθ(x , z) = πx(z) .

An auxiliary position-specific random variable ρ ∼ N (0,G(z)) is introduced,
the “momentum”

The Hamiltonian writes

HRiem
x (z , ρ) = Ux(z) +

1

2
log((2π)D det G(z)) +

1

2
ρ>G(z)−1ρ .

=⇒ Make use of the “Generalized” Leapfrog integrator

Pros:

The sampling is guided by the gradient of the true posterior
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