Variational Autoencoders: From Theory to Practice

Clément Chadebec

Université de Paris - INRIA (HeKA team) - INSERM

March 1, 2023

Overview

Variational Autoencoder - The Idea

- Autoencoder
- VAE framework
- Some use cases
- Mathematical foundations
- 2 Enhancing the model
 - Tweaking the variational distribution
 - Building better estimators
 - Questioning our priors

Autoencoder

• The objective \implies Dimensionnality Reduction

Figure: Simple Autoencoder

• Need for a representation of the image \Longrightarrow vectors

Autoencoder

• The objective \implies Dimensionnality Reduction

Figure: Simple Autoencoder

• Need for a representation of the image \Longrightarrow vectors

Figure: Simple Autoencoder

Assumptions:

- Let $x \in \mathcal{X}$ be a set a data. We assume that there exists $z \in \mathcal{Z}$ such that z is a low dimensional representation of x
- The encoder e_{θ} and decoder d_{ϕ} are functions modelled by neural networks (NNs) such that θ and ϕ are the weights of the NNs
- Let x' be the reconstructed samples, the objective is to have $x\simeq x'$

The Objective function writes:

$$\mathcal{L} = \|x - x'\|^2 = \|x - d_{\phi}(z)\|^2 = \|x - d_{\phi}(e_{\theta}(x))\|^2$$

$$\phi \leftarrow \phi - \varepsilon \cdot \nabla_{\phi} \mathcal{L}$$
$$\theta \leftarrow \theta - \varepsilon \cdot \nabla_{\theta} \mathcal{L}$$

Assumptions:

- Let $x \in \mathcal{X}$ be a set a data. We assume that there exists $z \in \mathcal{Z}$ such that z is a low dimensional representation of x
- The encoder e_{θ} and decoder d_{ϕ} are functions modelled by neural networks (NNs) such that θ and ϕ are the weights of the NNs
- Let x' be the reconstructed samples, the objective is to have $x\simeq x'$

The Objective function writes:

$$\mathcal{L} = \|x - x'\|^2 = \|x - d_{\phi}(z)\|^2 = \|x - d_{\phi}(e_{\theta}(x))\|^2$$

$$\phi \leftarrow \phi - \varepsilon \cdot \nabla_{\phi} \mathcal{L}$$
$$\theta \leftarrow \theta - \varepsilon \cdot \nabla_{\theta} \mathcal{L}$$

Assumptions:

- Let $x \in \mathcal{X}$ be a set a data. We assume that there exists $z \in \mathcal{Z}$ such that z is a low dimensional representation of x
- The encoder e_{θ} and decoder d_{ϕ} are functions modelled by neural networks (NNs) such that θ and ϕ are the weights of the NNs
- Let x' be the reconstructed samples, the objective is to have $x\simeq x'$

The Objective function writes:

$$\mathcal{L} = \|x - x'\|^2 = \|x - d_{\phi}(z)\|^2 = \|x - d_{\phi}(e_{\theta}(x))\|^2$$

$$\phi \leftarrow \phi - \varepsilon \cdot \nabla_{\phi} \mathcal{L}$$
$$\theta \leftarrow \theta - \varepsilon \cdot \nabla_{\theta} \mathcal{L}$$

Assumptions:

- Let $x \in \mathcal{X}$ be a set a data. We assume that there exists $z \in \mathcal{Z}$ such that z is a low dimensional representation of x
- The encoder e_{θ} and decoder d_{ϕ} are functions modelled by neural networks (NNs) such that θ and ϕ are the weights of the NNs
- Let x' be the reconstructed samples, the objective is to have $x\simeq x'$

The Objective function writes:

$$\mathcal{L} = \|x - x'\|^2 = \|x - d_{\phi}(z)\|^2 = \|x - d_{\phi}(e_{\theta}(x))\|^2$$

$$\phi \leftarrow \phi - \varepsilon \cdot \nabla_{\phi} \mathcal{L}$$
$$\theta \leftarrow \theta - \varepsilon \cdot \nabla_{\theta} \mathcal{L}$$

Assumptions:

- Let $x \in \mathcal{X}$ be a set a data. We assume that there exists $z \in \mathcal{Z}$ such that z is a low dimensional representation of x
- The encoder e_{θ} and decoder d_{ϕ} are functions modelled by neural networks (NNs) such that θ and ϕ are the weights of the NNs
- Let x' be the reconstructed samples, the objective is to have $x\simeq x'$

The Objective function writes:

$$\mathcal{L} = \|x - x'\|^2 = \|x - d_{\phi}(z)\|^2 = \|x - d_{\phi}(e_{\theta}(x))\|^2$$

 \implies The networks are optimised using stochastic gradient descent

$$\phi \leftarrow \phi - \varepsilon \cdot \nabla_{\phi} \mathcal{L}$$
$$\theta \leftarrow \theta - \varepsilon \cdot \nabla_{\theta} \mathcal{L}$$

• How to generate new data ?

Figure: Generation procedure ?

- How to sample form the latent space?
- The Autoencoder was just trained to encode and decode the **input data** without information on its structure or distribution.

• How to generate new data ?

Figure: Generation procedure ?

Figure: Potential latent space

• How to sample form the latent space?

• The Autoencoder was just trained to encode and decode the **input data** without information on its structure or distribution.

• How to generate new data ?

Figure: Generation procedure ?

Figure: Potential latent space

- How to sample form the latent space?
- The Autoencoder was just trained to encode and decode the **input data** without information on its structure or distribution.

• How to generate new data ?

Figure: Generation procedure ?

Figure: Potential latent space

- How to sample form the latent space?
- The Autoencoder was just trained to encode and decode the **input data** without information on its structure or distribution.

VAE - The Idea

• An autoencoder based model...

Figure: Simple autoencoder

• ... but where an input data point is encoded as a **distribution** defined over the latent space [17, 27]

VAE framework

VAE - The Idea

An autoencoder based model...

Figure: Simple autoencoder

• ... but where an input data point is encoded as a **distribution** defined over the latent space [17, 27]

Figure: VAE framework

VAE - Use Cases

- The VAE is a very versatile model that can be used to model complex distributions [18] such as *images* [34, 33], time series [5, 13], natural language [2], chemical structures [30], shapes [4] ...
- It can be used for various tasks as well!

Image Synthesis

• VAE as a generative model for image data

Figure: Samples from NVAE [33] on FFHQ [16]

Data Augmentation

• VAE for Data Augmentation of 3D MRIs to enhance Alzheimer's disease automatic diagnosis [7]

		ADNI			AIBL		
training set	data set	sensitivity	specificity	balanced accuracy	sensitivity	specificity	balanced accuracy
train-50	real	70.3 ± 12.2	62.4 ± 11.5	66.3 ± 2.4	60.7 ± 13.7	73.8 ± 7.2	67.2 ± 4.1
	real (high-resolution)	78.5 ± 9.4	57.4 ± 8.8	67.9 ± 2.3	57.2 ± 11.2	75.8 ± 7.0	66.5 ± 3.0
	500 synthetic + real	71.9 ± 5.3	67.0 ± 4.5	69.4 ± 1.6	55.9 ± 6.8	81.1 ± 3.1	68.5 ± 2.5
	2000 synthetic + real	72.2 ± 4.4	70.3 ± 4.3	71.2 ± 1.6	66.6 ± 7.1	79.0 ± 4.1	72.8 ± 2.2
	5000 synthetic + real	74.7 ± 5.3	73.5 ± 4.8	74.1 ± 2.2	71.7 ± 10.0	80.5 ± 4.4	76.1 ± 3.6
	10000 synthetic + real	74.7 ± 7.0	73.4 ± 6.1	74.0 ± 2.7	69.1 ± 9.9	80.7 ± 5.1	74.9 ± 3.2

Figure: Classification results with state-of-the-art CNN for Alzheimer disease from [7]

Clustering

• VAE for clustering

Figure: 2-dimensional latent spaces learned by a vanilla VAE (N-VAE), Poincaré VAE (P-VAE) and Hyperspherical VAE (S-VAE) on MNIST. The colors represent the digits. Plots are made using [8]

Feature Extraction

• VAE used as feature extractor (e.g. Stable diffusion) [28]

- Let $x \in \mathcal{X}$ be a set of data and $\{P_{\theta}, \theta \in \Theta\}$ be a parametric model
- We assume there exists latent variables $z \in \mathcal{Z}$ living in a smaller space such that the marginal likelihood writes

$$p_{\theta}(x) = \int p_{\theta}(x|z) q_{\text{prior}}(z) dz$$
,

where $q_{\rm prior}$ is a prior distribution over the latent variables and $p_{\theta}(x|z)$ is referred to as the decoder

• Example:

$$q_{\text{prior}} = \mathcal{N}(0, I), \quad p_{\theta}(x|z) = \prod_{i=1}^{D} \mathcal{B}(\pi_{\theta_i(z)})$$

Objective:

• Maximizing the likelihood of the model

- Let $x \in \mathcal{X}$ be a set of data and $\{P_{\theta}, \theta \in \Theta\}$ be a parametric model
- We assume there exists latent variables $z \in Z$ living in a smaller space such that the marginal likelihood writes

$$p_{\theta}(x) = \int p_{\theta}(x|z) q_{\text{prior}}(z) dz$$
,

where $q_{\rm prior}$ is a prior distribution over the latent variables and $p_{\theta}(x|z)$ is referred to as the decoder

• Example:

$$q_{\text{prior}} = \mathcal{N}(0, I), \quad p_{\theta}(x|z) = \prod_{i=1}^{D} \mathcal{B}(\pi_{\theta_i(z)})$$

Objective:

• Maximizing the likelihood of the model

- Let $x \in \mathcal{X}$ be a set of data and $\{P_{\theta}, \theta \in \Theta\}$ be a parametric model
- We assume there exists latent variables $z \in Z$ living in a smaller space such that the marginal likelihood writes

$$p_{\theta}(x) = \int p_{\theta}(x|z) q_{\text{prior}}(z) dz$$
,

where $q_{\rm prior}$ is a prior distribution over the latent variables and $p_{\theta}(x|z)$ is referred to as the decoder

• Example:

$$q_{\text{prior}} = \mathcal{N}(0, I), \quad p_{\theta}(x|z) = \prod_{i=1}^{D} \mathcal{B}(\pi_{\theta_i(z)})$$

Objective:

• Maximizing the likelihood of the model

- Let $x \in \mathcal{X}$ be a set of data and $\{P_{\theta}, \theta \in \Theta\}$ be a parametric model
- We assume there exists latent variables $z \in Z$ living in a smaller space such that the marginal likelihood writes

$$p_{\theta}(x) = \int p_{\theta}(x|z) q_{\text{prior}}(z) dz$$
,

where $q_{\rm prior}$ is a prior distribution over the latent variables and $p_{\theta}(x|z)$ is referred to as the decoder

• Example:

$$q_{\text{prior}} = \mathcal{N}(0, I), \quad p_{\theta}(x|z) = \prod_{i=1}^{D} \mathcal{B}(\pi_{\theta_i(z)})$$

Objective:

• Maximizing the likelihood of the model

- Let $x \in \mathcal{X}$ be a set of data and $\{P_{\theta}, \theta \in \Theta\}$ be a parametric model
- We assume there exists latent variables $z \in Z$ living in a smaller space such that the marginal likelihood writes

$$p_{\theta}(x) = \int p_{\theta}(x|z) q_{\text{prior}}(z) dz$$
,

where $q_{\rm prior}$ is a prior distribution over the latent variables and $p_{\theta}(x|z)$ is referred to as the decoder

• Example:

$$q_{\text{prior}} = \mathcal{N}(0, I), \quad p_{\theta}(x|z) = \prod_{i=1}^{D} \mathcal{B}(\pi_{\theta_i(z)})$$

Objective:

• Maximizing the likelihood of the model

One may write:

1

$$\begin{split} \log p_{\theta}(x) &= \log \left(\int p_{\theta}(x|z) q_{\text{prior}}(z) dz \right) \\ &= \log \left(\int p_{\theta}(x,z) dz \right) \\ &= \log \left(\int p_{\theta}(x,z) \frac{q(z)}{q(z)} dz \right), \text{ for any pdf } q \\ &\geq \int \left(\log \frac{p_{\theta}(x,z)}{q(z)} \right) q(z) dz, \text{ using Jensen's inequality} \\ &\geq \int \left(\log p_{\theta}(x,z) \right) q(z) dz - H(q(z)) \end{split}$$

with H the entropy of q(z).

One may write:

1

$$\begin{split} \log p_{\theta}(x) &= \log \left(\int p_{\theta}(x|z)q_{\text{prior}}(z)dz \right) \\ &= \log \left(\int p_{\theta}(x,z)dz \right) \\ &= \log \left(\int p_{\theta}(x,z)\frac{q(z)}{q(z)}dz \right), \text{ for any pdf } q \\ &\geq \int \left(\log \frac{p_{\theta}(x,z)}{q(z)} \right)q(z)dz, \text{ using Jensen's inequality} \\ &\geq \int \left(\log p_{\theta}(x,z) \right)q(z)dz - H(q(z)) \end{split}$$

with H the entropy of q(z).

One may write:

$$\begin{split} \log p_{\theta}(x) &= \log \left(\int p_{\theta}(x|z)q_{\text{prior}}(z)dz \right) \\ &= \log \left(\int p_{\theta}(x,z)dz \right) \\ &= \log \left(\int p_{\theta}(x,z)\frac{q(z)}{q(z)}dz \right), \text{ for any pdf } q \\ &\geq \int \left(\log \frac{p_{\theta}(x,z)}{q(z)} \right)q(z)dz, \text{ using Jensen's inequality} \\ &\geq \int \left(\log p_{\theta}(x,z) \right)q(z)dz - H(q(z)) \end{split}$$

with H the entropy of q(z).

One may write:

$$\begin{split} \log p_{\theta}(x) &= \log \left(\int p_{\theta}(x|z)q_{\text{prior}}(z)dz \right) \\ &= \log \left(\int p_{\theta}(x,z)dz \right) \\ &= \log \left(\int p_{\theta}(x,z)\frac{q(z)}{q(z)}dz \right), \text{ for any pdf } q \\ &\geq \int \left(\log \frac{p_{\theta}(x,z)}{q(z)} \right)q(z)dz, \text{ using Jensen's inequality} \\ &\geq \int \left(\log p_{\theta}(x,z) \right)q(z)dz - H(q(z)) \end{split}$$

with H the entropy of q(z).

One may write:

$$\begin{split} \log p_{\theta}(x) &= \log \left(\int p_{\theta}(x|z)q_{\text{prior}}(z)dz \right) \\ &= \log \left(\int p_{\theta}(x,z)dz \right) \\ &= \log \left(\int p_{\theta}(x,z)\frac{q(z)}{q(z)}dz \right), \text{ for any pdf } q \\ &\geq \int \left(\log \frac{p_{\theta}(x,z)}{q(z)} \right)q(z)dz, \text{ using Jensen's inequality} \\ &\geq \int \left(\log p_{\theta}(x,z) \right)q(z)dz - H(q(z)) \end{split}$$

with H the entropy of q(z).

One may write:

$$\begin{split} \log p_{\theta}(x) &= \log \left(\int p_{\theta}(x|z)q_{\text{prior}}(z)dz \right) \\ &= \log \left(\int p_{\theta}(x,z)dz \right) \\ &= \log \left(\int p_{\theta}(x,z)\frac{q(z)}{q(z)}dz \right), \text{ for any pdf } q \\ &\geq \int \left(\log \frac{p_{\theta}(x,z)}{q(z)} \right)q(z)dz, \text{ using Jensen's inequality} \\ &\geq \int \left(\log p_{\theta}(x,z) \right)q(z)dz - H(q(z)) \end{split}$$

with H the entropy of q(z).

- Well-know issue: the posterior $q(z) = p_{\theta}(z|x)$ is intractable.
 - \longrightarrow use Expectation-Maximisation algorithms (up to the MCMC-SAEM version)
- OR approximate this posterior with amortised variational inference → ELBO
 Introduce a parametric approximation:

 $q_{\phi}(z|x) \simeq p_{\theta}(z|x) \,,$

where $q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \Sigma_{\phi}(x))$

• This leads to an unbiased estimate of the log-likelihood

$$\widehat{p_{\theta}}(x) = \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)}, \quad \mathbb{E}_{z \sim q_{\phi}(z|x)}[\widehat{p_{\theta}}(x)] = p_{\theta}(x),$$

$$\log p_{\theta}(x) \ge \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log(p_{\theta}(x, z)) - \log(q_{\phi}(z|x))]$$
$$\ge ELBO$$

- Well-know issue: the posterior $q(z) = p_{\theta}(z|x)$ is intractable.
 - \longrightarrow use Expectation-Maximisation algorithms (up to the MCMC-SAEM version)
- $\bullet~$ OR approximate this posterior with amortised variational inference $\rightarrow~$ ELBO
- Introduce a parametric approximation:

 $q_{\phi}(z|x) \simeq p_{\theta}(z|x) \,,$

where $q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \Sigma_{\phi}(x))$

• This leads to an unbiased estimate of the log-likelihood

$$\widehat{p_{\theta}}(x) = \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)}, \qquad \mathbb{E}_{z \sim q_{\phi}(z|x)}[\widehat{p_{\theta}}(x)] = p_{\theta}(x),$$

$$\log p_{\theta}(x) \ge \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log(p_{\theta}(x, z)) - \log(q_{\phi}(z|x))]$$
$$\ge ELBO$$

- Well-know issue: the posterior $q(z) = p_{\theta}(z|x)$ is intractable.
 - \longrightarrow use Expectation-Maximisation algorithms (up to the MCMC-SAEM version)
- $\bullet~$ OR approximate this posterior with amortised variational inference $\rightarrow~$ ELBO
- Introduce a parametric approximation:

 $q_{\phi}(z|x) \simeq p_{\theta}(z|x) \,,$

where $q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \Sigma_{\phi}(x))$

• This leads to an unbiased estimate of the log-likelihood

$$\widehat{p_{\theta}}(x) = \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)}, \qquad \mathbb{E}_{z \sim q_{\phi}(z|x)}[\widehat{p_{\theta}}(x)] = p_{\theta}(x),$$

$$\log p_{\theta}(x) \ge \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log(p_{\theta}(x, z)) - \log(q_{\phi}(z|x))]$$
$$\ge ELBO$$

- Well-know issue: the posterior $q(z) = p_{\theta}(z|x)$ is intractable.
 - \longrightarrow use Expectation-Maximisation algorithms (up to the MCMC-SAEM version)
- $\bullet~$ OR approximate this posterior with amortised variational inference $\rightarrow~$ ELBO
- Introduce a parametric approximation:

 $q_{\phi}(z|x) \simeq p_{\theta}(z|x) \,,$

where $q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \Sigma_{\phi}(x))$

• This leads to an unbiased estimate of the log-likelihood

$$\widehat{p_{\theta}}(x) = \frac{p_{\theta}(x, z)}{q_{\phi}(z|x)}, \qquad \mathbb{E}_{z \sim q_{\phi}(z|x)}[\widehat{p_{\theta}}(x)] = p_{\theta}(x),$$

$$\log p_{\theta}(x) \ge \mathbb{E}_{z \sim q_{\phi}(z|x)} [\log(p_{\theta}(x, z)) - \log(q_{\phi}(z|x))]$$
$$\ge ELBO$$

Variational inference: The ELBO

Objective:

1. Optimise the ELBO as a function instead of the target distribution Use stochastic gradient descent in both θ and ϕ
Mathematical foundations

The Reparametrisation Trick for stochastic gradient descent

Recall the ELBO

$$\log p_{\theta}(x) \ge \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log(p_{\theta}(x, z)) - \log(q_{\phi}(z|x))]$$
$$\ge ELBO$$

• Since $z\sim \mathcal{N}(\mu_{\phi}(x),\Sigma_{\phi}(x)),$ the model is not amenable to gradient descent w.r.t ϕ

(a) Back-propagation impossible

 \Rightarrow Optimisation with respect to encoder and decoder parameters made possible !

 $\mathbf{Objective} \Longrightarrow \mathbf{OK}$

The Reparametrisation Trick for stochastic gradient descent

Recall the ELBO

$$\log p_{\theta}(x) \ge \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log(p_{\theta}(x, z)) - \log(q_{\phi}(z|x))]$$
$$\ge ELBO$$

• Since $z\sim \mathcal{N}(\mu_{\phi}(x),\Sigma_{\phi}(x)),$ the model is not amenable to gradient descent w.r.t ϕ

 \Rightarrow Optimisation with respect to encoder and decoder parameters made possible !

 $\mathsf{Objective} \Longrightarrow \mathsf{OK}$

The Reparametrisation Trick for stochastic gradient descent

Recall the ELBO

$$\log p_{\theta}(x) \ge \mathbb{E}_{z \sim q_{\phi}(z|x)}[\log(p_{\theta}(x, z)) - \log(q_{\phi}(z|x))]$$
$$\ge ELBO$$

• Since $z\sim \mathcal{N}(\mu_{\phi}(x),\Sigma_{\phi}(x)),$ the model is not amenable to gradient descent w.r.t ϕ

 \implies Optimisation with respect to encoder and decoder parameters made possible !

Objective \Longrightarrow **OK**

Generating new samples

• We only need to sample $z \sim \mathcal{N}(0, I)$ and feed it to the decoder.

Figure: Generation procedure using prior

Pros:

• Very simple to use in practice

Cons:

- The prior and posterior are not expressive enough to capture complex distributions
- Poor latent space prospecting

Generating new samples

 \bullet We only need to sample $z \sim \mathcal{N}(0, I)$ and feed it to the decoder.

Figure: Generation procedure using prior

Pros:

• Very simple to use in practice

<u>Cons:</u>

- The prior and posterior are not expressive enough to capture complex distributions
- Poor latent space prospecting

Generating new samples

 \bullet We only need to sample $z \sim \mathcal{N}(0, I)$ and feed it to the decoder.

Figure: Generation procedure using prior

Pros:

• Very simple to use in practice

<u>Cons:</u>

- The prior and posterior are not expressive enough to capture complex distributions
- Poor latent space prospecting

Improving the model

Can we do better?

Tweaking the Approximate Posterior Distribution

• The ELBO can written as

$$ELBO = \log p_{\theta}(x) - \underbrace{\operatorname{KL}(q_{\phi}(z|x)||p_{\theta}(z|x))}_{\approx 0 \text{ if } q_{\phi}(z|x) \approx p_{\theta}(z|x)}.$$

• Since the Kullback-Leiber divergence is always non-negative, the objective is to try to make it vanish by tweaking the approximate posterior $q_{\phi}(z|x)$

Tweaking the Approximate Posterior Distribution

• The ELBO can written as

$$ELBO = \log p_{\theta}(x) - \underbrace{\operatorname{KL}(q_{\phi}(z|x)||p_{\theta}(z|x))}_{\approx 0 \text{ if } q_{\phi}(z|x) \approx p_{\theta}(z|x)}.$$

• Since the Kullback-Leiber divergence is always non-negative, the objective is to try to make it vanish by tweaking the approximate posterior $q_{\phi}(z|x)$

Normalizing Flows

- $\bullet\,$ The idea is to use smooth invertible parameterised mappings f_ψ to "sample" z [26]
- K transformations are then applied to a latent variable z_0 drawn from an initial distribution q (here $q = q_{\phi}$) leading to a final random variable $z_K = f_x^K \circ \cdots \circ f_x^1(z_0)$ whose density writes

$$q_{\phi}(z_K|x) = q_{\phi}(z_0|x) \prod_{k=1}^{K} |\det \mathbf{J}_{f_x^k}|^{-1},$$

• *E.g.* Planar flows [26], NICE [10], radial flows [26], RealNVP [11], Masked Autoregressive Flows (MAF) [23] or Inverse Autoregressive Flows (IAF) [19]

Normalizing Flows

- The idea is to use smooth invertible parameterised mappings f_ψ to "sample" z [26]
- K transformations are then applied to a latent variable z_0 drawn from an initial distribution q (here $q = q_{\phi}$) leading to a final random variable $z_K = f_x^K \circ \cdots \circ f_x^1(z_0)$ whose density writes

$$q_{\phi}(z_K|x) = q_{\phi}(z_0|x) \prod_{k=1}^{K} |\det \mathbf{J}_{f_x^k}|^{-1},$$

• *E.g.* Planar flows [26], NICE [10], radial flows [26], RealNVP [11], Masked Autoregressive Flows (MAF) [23] or Inverse Autoregressive Flows (IAF) [19]

Normalizing Flows

- The idea is to use smooth invertible parameterised mappings f_ψ to "sample" z [26]
- K transformations are then applied to a latent variable z_0 drawn from an initial distribution q (here $q = q_{\phi}$) leading to a final random variable $z_K = f_x^K \circ \cdots \circ f_x^1(z_0)$ whose density writes

$$q_{\phi}(z_K|x) = q_{\phi}(z_0|x) \prod_{k=1}^{K} |\det \mathbf{J}_{f_x^k}|^{-1},$$

• *E.g.* Planar flows [26], NICE [10], radial flows [26], RealNVP [11], Masked Autoregressive Flows (MAF) [23] or Inverse Autoregressive Flows (IAF) [19]

Tweaking the variational distribution

Auxiliary Latent Variables

• Idea: Work with an extended space by adding an *auxiliary* continuous random variable $u \in \mathcal{U}$ and consider an augmented inference model [29, 20, 24]

$$q_{\phi}(u,z|x) = q_{\phi}(u|x)q_{\phi}(z|u,x) \,.$$

• u allows to access to a potentially richer class of $q_{\phi}(z|x)$ since

$$q_{\phi}(z|x) = \int_{\mathcal{U}} q_{\phi}(u, z|x) du$$
.

• The extended generative model follows

$$p_{\theta}(x, z, u) = p_{\theta}(u|x, z)p_{\theta}(x, z).$$

• Idea: Work with an extended space by adding an *auxiliary* continuous random variable $u \in \mathcal{U}$ and consider an augmented inference model [29, 20, 24]

$$q_\phi(u,z|x) = q_\phi(u|x)q_\phi(z|u,x)\,.$$

• u allows to access to a potentially richer class of $q_{\phi}(z|x)$ since

$$q_{\phi}(z|x) = \int_{\mathcal{U}} q_{\phi}(u, z|x) du$$
.

• The extended generative model follows

$$p_{\theta}(x, z, u) = p_{\theta}(u|x, z)p_{\theta}(x, z).$$

• Idea: Work with an extended space by adding an *auxiliary* continuous random variable $u \in \mathcal{U}$ and consider an augmented inference model [29, 20, 24]

$$q_{\phi}(u, z|x) = q_{\phi}(u|x)q_{\phi}(z|u, x) \,.$$

• u allows to access to a potentially richer class of $q_{\phi}(z|x)$ since

$$q_{\phi}(z|x) = \int_{\mathcal{U}} q_{\phi}(u, z|x) du$$
.

• The extended generative model follows

$$p_{\theta}(x, z, u) = p_{\theta}(u|x, z)p_{\theta}(x, z)$$
.

• In a similar fashion as Eq. (1), one can build an unbiased estimator of the marginal likelihood $p_{\theta}(x)$

$$\widehat{p}_{\theta}(x) = \frac{p_{\theta}(x, z, u)}{q_{\phi}(u, z | x)} \text{ and } \mathbb{E}_{(u, z) \sim q_{\phi}} \left[\widehat{p}_{\theta} \right] = p_{\theta}(x) \,.$$

• This allows to derive an ELBO

$$\log p_{\theta}(x) = \log \mathbb{E}_{(u,z) \sim q_{\phi}} \left[\widehat{p}_{\theta}(x) \right] , \\ \geq \mathbb{E}_{(u,z) \sim q_{\phi}} \left[\log \left(\frac{p_{\theta}(x,z,u)}{q_{\phi}(u,z|x)} \right) \right] = \mathcal{L}_{\mathrm{aux}}(\theta,\phi,x) .$$

• *E.g.* Hierarchical VAEs [24], Hamiltonian VAE [6], Riemannian Hamiltonian VAE [7], MCMC VAE [29, 31]

• In a similar fashion as Eq. (1), one can build an unbiased estimator of the marginal likelihood $p_{\theta}(x)$

$$\widehat{p}_{\theta}(x) = \frac{p_{\theta}(x, z, u)}{q_{\phi}(u, z | x)} \text{ and } \mathbb{E}_{(u, z) \sim q_{\phi}} \left[\widehat{p}_{\theta} \right] = p_{\theta}(x) \,.$$

• This allows to derive an ELBO

1

$$\begin{split} \log p_{\theta}(x) &= \log \mathbb{E}_{(u,z) \sim q_{\phi}} \left[\widehat{p}_{\theta}(x) \right] , \\ &\geq \mathbb{E}_{(u,z) \sim q_{\phi}} \left[\log \left(\frac{p_{\theta}(x,z,u)}{q_{\phi}(u,z|x)} \right) \right] = \mathcal{L}_{\mathrm{aux}}(\theta,\phi,x) . \end{split}$$

• *E.g.* Hierarchical VAEs [24], Hamiltonian VAE [6], Riemannian Hamiltonian VAE [7], MCMC VAE [29, 31]

• In a similar fashion as Eq. (1), one can build an unbiased estimator of the marginal likelihood $p_{\theta}(x)$

$$\widehat{p}_{\theta}(x) = \frac{p_{\theta}(x, z, u)}{q_{\phi}(u, z | x)} \text{ and } \mathbb{E}_{(u, z) \sim q_{\phi}} \left[\widehat{p}_{\theta} \right] = p_{\theta}(x) \,.$$

• This allows to derive an ELBO

$$\begin{split} \log p_{\theta}(x) &= \log \mathbb{E}_{(u,z) \sim q_{\phi}} \left[\widehat{p}_{\theta}(x) \right] , \\ &\geq \mathbb{E}_{(u,z) \sim q_{\phi}} \left[\log \left(\frac{p_{\theta}(x,z,u)}{q_{\phi}(u,z|x)} \right) \right] = \mathcal{L}_{\mathrm{aux}}(\theta,\phi,x) . \end{split}$$

• *E.g.* Hierarchical VAEs [24], Hamiltonian VAE [6], Riemannian Hamiltonian VAE [7], MCMC VAE [29, 31]

Building Better Estimators

• The estimator used in the vanilla VAE is given by

$$\widehat{p}_{\theta}(x) = \frac{p_{\theta}(x,z)}{q_{\phi}(z|x)} \text{ and } \mathbb{E}_{z \sim q_{\phi}}\left[\widehat{p}_{\theta}\right] = p_{\theta}(x).$$
 (1)

- Several approached proposed to build more complex estimators of the marginal likelihood $p_{\theta}(x)$ [3, 21, 12, 31]
- *E.g* Importance Weighted AutoEncoder (IWAE) that uses an ELBO derived from the *K*-sample importance weighted estimator.

$$\widehat{p}_{\theta}(x) = \frac{1}{K} \sum_{i=1}^{K} \frac{p_{\theta}(x, z_i)}{q_{\phi}(z_i | x)} \text{ and } \mathbb{E}_{z_1, \dots, z_K \sim q_{\phi}(z | x)} \left[\widehat{p}_{\theta} \right] = p_{\theta}(x) \,.$$

$$\mathcal{L}_{\text{IWAE}}(\theta, \phi, x) = \mathbb{E}_{z_1, \dots, z_K \sim q_{\phi}(z|x)} \left[\log \frac{1}{K} \sum_{i=1}^{K} \frac{p_{\theta}(x, z_i)}{q_{\phi}(z_i|x)} \right]$$

Building Better Estimators

• The estimator used in the vanilla VAE is given by

$$\widehat{p}_{\theta}(x) = rac{p_{\theta}(x,z)}{q_{\phi}(z|x)} ext{ and } \mathbb{E}_{z \sim q_{\phi}} \big[\widehat{p}_{\theta} \big] = p_{\theta}(x) \,.$$

- Several approached proposed to build more complex estimators of the marginal likelihood $p_{\theta}(x)$ [3, 21, 12, 31]
- *E.g* Importance Weighted AutoEncoder (IWAE) that uses an ELBO derived from the *K*-sample importance weighted estimator.

$$\widehat{p}_{\theta}(x) = \frac{1}{K} \sum_{i=1}^{K} \frac{p_{\theta}(x, z_i)}{q_{\phi}(z_i | x)} \text{ and } \mathbb{E}_{z_1, \dots, z_K \sim q_{\phi}(z | x)} \left[\widehat{p}_{\theta} \right] = p_{\theta}(x) \,.$$

$$\mathcal{L}_{\text{IWAE}}(\theta, \phi, x) = \mathbb{E}_{z_1, \dots, z_K \sim q_\phi(z|x)} \left[\log \frac{1}{K} \sum_{i=1}^K \frac{p_\theta(x, z_i)}{q_\phi(z_i|x)} \right]$$

Building Better Estimators

• The estimator used in the vanilla VAE is given by

$$\widehat{p}_{\theta}(x) = rac{p_{\theta}(x,z)}{q_{\phi}(z|x)} ext{ and } \mathbb{E}_{z \sim q_{\phi}} \big[\widehat{p}_{\theta} \big] = p_{\theta}(x) \,.$$

- Several approached proposed to build more complex estimators of the marginal likelihood $p_{\theta}(x)$ [3, 21, 12, 31]
- *E.g* Importance Weighted AutoEncoder (IWAE) that uses an ELBO derived from the *K*-sample importance weighted estimator.

$$\widehat{p}_{\theta}(x) = \frac{1}{K} \sum_{i=1}^{K} \frac{p_{\theta}(x, z_i)}{q_{\phi}(z_i | x)} \text{ and } \mathbb{E}_{z_1, \dots, z_K \sim q_{\phi}(z | x)} \left[\widehat{p}_{\theta} \right] = p_{\theta}(x) \,.$$

$$\mathcal{L}_{\text{IWAE}}(\theta, \phi, x) = \mathbb{E}_{z_1, \dots, z_K \sim q_\phi(z|x)} \left[\log \frac{1}{K} \sum_{i=1}^K \frac{p_\theta(x, z_i)}{q_\phi(z_i|x)} \right]$$

• Recall the vanilla VAE ELBO

 $\mathcal{L}(\theta, \phi, x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - \mathrm{KL}(q_{\phi}(z|x)||p(z)) \,.$

• One may show that the prior maximising the ELBO is given by the *aggregated* posterior [15, 32]

$$q^{\text{avg}}(z) = \frac{1}{N} \sum_{i=1}^{N} q_{\phi}(z|x_i)$$

• However, it can lead to overfitting and is hard to use in practice

• Recall the vanilla VAE ELBO

$$\mathcal{L}(\theta, \phi, x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - \mathrm{KL}(q_{\phi}(z|x)||p(z)) \,.$$

• One may show that the prior maximising the ELBO is given by the *aggregated* posterior [15, 32]

$$q^{\text{avg}}(z) = \frac{1}{N} \sum_{i=1}^{N} q_{\phi}(z|x_i)$$

• However, it can lead to overfitting and is hard to use in practice

• Recall the vanilla VAE ELBO

$$\mathcal{L}(\theta, \phi, x) = \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - \mathrm{KL}(q_{\phi}(z|x)||p(z)) \,.$$

• One may show that the prior maximising the ELBO is given by the *aggregated* posterior [15, 32]

$$q^{\text{avg}}(z) = \frac{1}{N} \sum_{i=1}^{N} q_{\phi}(z|x_i)$$

• However, it can lead to overfitting and is hard to use in practice

Several axis of development were proposed in the literature to improve the generative capability of the model and reduce the regularisation coming from the prior.

• Approximate the *aggregated posterior* [32]:

$$p_{\lambda}^{\text{VAMP}}(z) = \frac{1}{K} \sum_{i=1}^{K} q_{\phi}(z|u_k) \,,$$

- Learn the prior during training [9, 25, 22, 1]
- *post*-training density estimation with Gaussian mixture or flows [34, 14] => Estimate density of the latent code

Several axis of development were proposed in the literature to improve the generative capability of the model and reduce the regularisation coming from the prior.

• Approximate the *aggregated posterior* [32]:

$$p_{\lambda}^{\text{VAMP}}(z) = \frac{1}{K} \sum_{i=1}^{K} q_{\phi}(z|u_k) \,,$$

- Learn the prior during training [9, 25, 22, 1]
- *post*-training density estimation with Gaussian mixture or flows [34, 14] => Estimate density of the latent code

Several axis of development were proposed in the literature to improve the generative capability of the model and reduce the regularisation coming from the prior.

• Approximate the *aggregated posterior* [32]:

$$p_{\lambda}^{\text{VAMP}}(z) = \frac{1}{K} \sum_{i=1}^{K} q_{\phi}(z|u_k) \,,$$

- Learn the prior during training [9, 25, 22, 1]
- *post*-training density estimation with Gaussian mixture or flows [34, 14] => Estimate density of the latent code

Several axis of development were proposed in the literature to improve the generative capability of the model and reduce the regularisation coming from the prior.

• Approximate the *aggregated posterior* [32]:

$$p_{\lambda}^{\text{VAMP}}(z) = \frac{1}{K} \sum_{i=1}^{K} q_{\phi}(z|u_k) \,,$$

- Learn the prior during training [9, 25, 22, 1]
- *post*-training density estimation with Gaussian mixture or flows [34, 14] => Estimate density of the latent code

VAE in Practice with Pythae

Training VAEs wit Pythae

Let's Train VAEs

What is Pythae?

• Pythae is a Python library that implements some of the most common VAEs models

pypi package 0.1.0	python	3.7 3.8 3.9-	+ doo	:s pa	ssing	license	Apache-2.0
code style	black	Codecov	97%	CO	Oper	n in Colab	

Documentation

pythae

This library implements some of the most common (Variational) Autoencoder models under a unified implementation. In particular, it provides the possibility to perform benchmark experiments and comparisons by training the models with the same autoencoding neural network architecture. The feature *make your own autoencoder* allows you to train any of these models with your own data and own Encoder and Decoder neural networks. It integrates experiment monitoring tools such wandb, mlflow or comet-ml s and allows model sharing and loading from the HuggingFace Hub entry of code.

News 🏴

As of v0.1.0, Pythae now supports distributed training using PyTorch's DDP. You can now train your favorite VAE faster and on larger datasets, still with a few lines of code. See our speed-up benchmark.

Why Pythae ?

• Unifying implementations

- × Existing implementations may be *difficult to adapt* to other use-cases, be in *different frameworks* or *no longer maintained*.
- Pythae's brick-like structure allows for seamless but efficient interchange between models, sampling techniques, network architectures, model hyper-parameters and training schemes.

A reproducible research environment

- × Reproducibility is hard: implementations may *no longer maintained* or *unavailable*.
- Pythae reproduced most of the most popular GAE methods (when code was available or enough information provided in the paper).
- Usable by all
 - × Existing codes may only allow reproduction of specific results available in the paper.
 - ✓ Pythae makes GAE models accessible to beginners and experts. The library has an online documentation and is also illustrated through tutorials available either on a local machine or on the Google Colab platform.

Why Pythae ?

• Unifying implementations

- × Existing implementations may be *difficult to adapt* to other use-cases, be in *different frameworks* or *no longer maintained*.
- ✓ Pythae's brick-like structure allows for seamless but efficient interchange between models, sampling techniques, network architectures, model hyper-parameters and training schemes.

• A reproducible research environment

- × Reproducibility is hard: implementations may *no longer maintained* or *unavailable*.
- ✓ **Pythae** reproduced most of the most popular GAE methods (when code was available or enough information provided in the paper).

• Usable by all

- Existing codes may only allow reproduction of specific results available in the paper.
- Pythae makes GAE models accessible to beginners and experts. The library has an online documentation and is also illustrated through tutorials available either on a local machine or on the Google Colab platform.

Why Pythae ?

• Unifying implementations

- × Existing implementations may be *difficult to adapt* to other use-cases, be in *different frameworks* or *no longer maintained*.
- ✓ Pythae's brick-like structure allows for seamless but efficient interchange between models, sampling techniques, network architectures, model hyper-parameters and training schemes.

• A reproducible research environment

- × Reproducibility is hard: implementations may *no longer maintained* or *unavailable*.
- ✓ Pythae reproduced most of the most popular GAE methods (when code was available or enough information provided in the paper).

• Usable by all

- × Existing codes may only allow reproduction of specific results available in the paper.
- ✓ Pythae makes GAE models accessible to beginners and experts. The library has an online documentation and is also illustrated through tutorials available either on a local machine or on the Google Colab platform.

Pythae - Code structure

Figure: Code structure

Pythae - API

Architecture Definition

•••

from pythae.models.nn import BaseEncoder, BaseDecode
from pythae.models.base.base_utils import ModelOutpu

Define encoder architecture
class My_Encoder(BaseEncoder):
 def __init__(self):
 BaseEncoder.__init__(self)
 self.lavers = nv nn lavers(

def forward(self, x: torch.Tensor) -> ModelOutput: out = self.layers(x) output = ModelOutput(enbedding=out) return output

Define decoder architecture
class My_Decoder(BaseDecoder):
 def __init__(self):
 BaseDecoder.__init__(self)
 self.layers = my_nn_layers

def forward(self, x: torch.Tensor) -> ModelOutput: aut = self.layers(x) output = ModelOutput(reconstruction=out) return output

Instantlate your encoder and decoder my_encoder = My_Encoder() my_decoder = My_Decoder() ...

Pythae - API

Architecture Definition

Training

from pythae.models.nn import BaseEncoder, BaseDecoder
from pythae.models.base.base_utils import ModelOutput

Uprime encoder architecture
lass My_Encoder(BaseEncoder):
 def __init__(self):
 BaseEncoder.__init__(self

out = sett.tayers(x) output = ModelOutput(embedding=out) return output

Derine becoder architecture lass Ny_Decoder(BaseDecoder): def __init__(self): BaseDecoder.__init__(self) self.layers = ny nn layers(

def forward(self, x: torch.Tensor) -> ModelOutput: aut = xelf.layers(x) output = ModelOutput(reconstruction=out) return output

Instantlate your encoder and decoder my_encoder = My_Encoder() my_decoder = My_Decoder() rom pythae.pipelines import TrainingPipeli rom pythae.models inport VAE, VAEConfig

Set up the training configuration
my_training_config = BaseTrainerConfig(...)

Set up the model configuration
model_config = VAEConfig(...)

Build the model
my_vae_model = VAE(
 model_config=my_vae_co

decoder=my_encoder,

Build the pipeline pipeline = TrainingPipeline(training_config=ny_training_config; model=my_vae_nodel

Launch the pipeline
pipeline(
 train_data=your_train_data,
 eval_data=your_eval_data
Pythae - API

Architecture Definition

Training

from pythae.models.nn import BaseEncoder, BaseDecoder
from pythae.models.base.base_utils import ModelOutput

Define encoder architecture
class Ny_Encoder(BaseEncoder):
 def __init__(self):
 BaseEncoder.__init__(self)

def forward(self, x: torch.Tensor) -> ModelOutput: aut = self.layers(x) output = ModelOutput(enbedding=out) return output

Define decoder architecture

def __init__(self): BaseDecoder.__init__(self) self.lavers = mv nn lavers()

def forward(self, x: torch.Tensor) -> ModelOutput: aut = self.layers(x) output = ModelOutput(reconstruction=out) return output

Instantlate your encoder and decoder my_encoder = My_Encoder() my_decoder = My_Decoder()

from pythae.pipelines import TrainingPipeline
from pythae.models import VAE, VAEConfig
from pythae.trainers import BaseTrainerConfig

Set up the training configuration
my_training_config = BaseTrainerConfig{...}

Set up the model configuratio
model_config = VAEConfig(...)

Build the model
my_wae_model = VAE(
 model_config=ny_wae_config
 encoder=my_encoder,
 decoder=my_decoder

Launch the pipeline
pipeline(
 train_data=your_train_data
 eval_data=your_eval_data

Data Generation

•••

from pythae.models import AutoModel
from pythae.samplers import GaussianNixtureSamplerConfig
from pythae.pipelines import GenerationPipeline

Retrieve the trained model
my_trained_vae = AutoModel.load_from_folder(
 'path/to/your/trained/model'

Set up the sampler configuration y_sampler_config = GaussianMixtureSamplerConfig n components=10

Build the pipeline ipeline = GenerationPipeline(model-my trained vae.

sampler_config=my_sampler_config

V Launch data generation apported camples - pipeli

generated_samples = pipeline num_samples=100, return_gen=True train_data=train_data, eval_data=None,

Zoom on Configurations

• How to define my training configuration?

Figure: Example of a training configuration

Zoom on Configurations

• How to define my model configuration?

Figure: Example of a model configuration

Distributed Training with Pythae

• Pythae also support distributed training using PyTorch DDP

Figure: Training configuration in a distributed setting

Distributed Training with Pythae

• Pythae also support distributed training using PyTorch DDP

Table 1: Training time of a Vector Quantized VAE (VQ-VAE) with Pythae on V100 GPU(s) on MNIST (100 epochs), FFHQ (50 epochs) and ImageNet-1k (20 epochs).

DATASET	DATA TYPE (TRAIN SIZE)	1 GPU	4 GPUs	2x4 GPUs
MNIST	28x28 images (50k)	221.01s	60.32s	34.50s
FFHQ	1024x1024 RGB images (60k)	19h 1min	5h 6min	2h 37min
ImageNet-1k	128x128 RGB images (≈ 1.2M)	6h 25min	1h 41min	51min 26s

Figure 1: Reconstructions on FFHQ-1024.

Pythae - Implemented Models

GAE Model	Pythae model	
Autoencoder	AE	
Variational Autoencoder	VAE	
Beta Variational Autoencoder	BetaVAE	
VAE with Linear Normalizing Flows	VAE_LinNF	
VAE with Inverse Autoregressive Flows	VAE_IAF	
Disentangled β -VAE	DisentangledBetaVAE	
Disentangling by Factorising	FactorVAE	
Beta-TC-VAE	BetaTCVAE	
Importance Weighted Autoencoder	IWAE	
Multiply Importance Weighted Autoencoder	MIWAE	
Partially Importance Weighted Autoencoder	PIWAE	
Combination Importance Weighted Autoencoder	CIWAE	
VAE with perceptual metric similarity	MSSSIM_VAE	
Wasserstein Autoencoder	WAE	
Info Variational Autoencoder	INFOVAE_MMD	
VAMP Autoencoder	VAMP	
Hyperspherical VAE	SVAE	
Poincaré Disk VAE	PoicaréVAE	
Adversarial Autoencoder	Adversarial_AE	
Variational Autoencoder GAN	VAEGAN	
Vector Quantized VAE	VQVAE	
Hamiltonian VAE	HVAE	
Regularized AE with L2 decoder param	RAE_L2	
Regularized AE with gradient penalty	RAE_GP	
Riemannian Hamiltonian VAE	RHVAE	

Figure: 25 implemented models

Pythae - Experiments monitoring

Pythae integrates experiment monitoring tools

•••

from pythae.trainers.training_callbacks import MandbCallback

callbacks = []

Build the callback
wandb_cb = WandbCallback()

Set up the callback

andb_cb.sctup(
 training_config=your_training_config,
 model_config=your_model_config,
 project_name="your_wandb_project",
 entity_name="your_wandb_entity",

Add it to the callbacks l'
callbacks.append(wandb_cb)

. . .

from pythae.trainers.training_callbacks import MLFlowCallback

callbacks = [

Build the callback
nlflow_cb = MLFlowCallback() # Build the callback

Set up the callback

ilflow_cb.setup(
 training_config=your_training_config,
 model_config=your_model_config,
 run_name="mlflow_cb_example",

Add it to the callbacks list callbacks.append(wandb cb)

Callback set-up

...

from pythae.trainers.training_callbacks import CometCallback

allbacks = []

Build the callback
comet_cb = CometCallback() # Build the callback

Set up the callback

met_cb.setup(
 training_config=training_config,
 nodel_config=wodel_config,
 api_key="your_comet_api_key",
 project_name="your_comet_project",

Add it to the callbacks list callbacks.append(wandb_cb)

Pythae - Experiments monitoring

Pythae integrates experiment monitoring tools

on ovthae.trainers.training callbacks import WandbCallbac

callbacks = [

- # Build the callback
 wandb_cb = WandbCallback()
- training_config=your_training_config model_config=your_model_config, project_name='your_wandb_project', entity_name='your_wandb_entity'',
- # Add it to the callbacks lis callbacks.append(wandb_cb)

....

from pythae.trainers.training_callbacks import MLFlowCallback

callbacks =

Build the callback
mlflow_cb = MLFlowCallback() # Build the callback

V Set up the callbac

(flow_cb.setup)
 training_config=your_training_config,
 model_config-your_model_config,

J Add it to the callbacks]

Callback set-up

. . .

from pythae.trainers.training_callbacks_import_CometCallback

allbacks = []

Build the callback
comet_cb = CometCallback() # Build the callback

V Set up the callback

smet_cb.setup(
 training_config=training_config,
 model_config=model_config,
 api_key="your_conet_api_key",
 project_name="your_conet_project"

Add it to the callbacks lis callbacks.append(wandb_cb)

•••

pipeline = TrainingPipeline(
 training_config=config,
 model=model
)

ipeline(
 train_data=train_dataset,
 eval_data=eval_dataset,
 callbacks=callbacks

•••

pipeline = TrainingPipeline(
 training_config=config,
 model=model

pipeline(train_data=train_dataset, eval_data=eval_dataset, callbacks=callbacks

•••

pipeline = TrainingPipeline(
 training_config=config,
 model=model

peline(
 train_data=train_dataset,
 eval_data=eval_dataset,
 callbacks=callbacks

Callback usage

Pythae - Experiments monitoring

Pythae - Model sharing

Pythae allows model sharing through the HuggingFace Hub

Pythae - Model sharing

Pythae allows model sharing through the HuggingFace Hub

my_vae_model.push_to_hf_hub(hf_hub_path="your_hf_username/your_hf_hub_repo")

Model saving

from pythae.models import AutoModel
my_downloaded_vae = AutoModel.load_from_hf_hub(hf_hub_path="path_to_hf_repo")

Model loading

Pythae - Resources

Thank you!

- ✓ Github: https://github.com/clementchadebec/benchmark_VAE
- ✓ Online documentation: https://pythae.readthedocs.io/en/latest/
- ✓ Pypi project page: https://pypi.org/project/pythae/
- ✓ Open to contributors!

Bibliography I

- Jyoti Aneja, Alexander Schwing, Jan Kautz, and Arash Vahdat. NCP-VAE: Variational autoencoders with noise contrastive priors. arXiv:2010.02917 [cs, stat], 2020.
- [2] Samuel Bowman, Luke Vilnis, Oriol Vinyals, Andrew Dai, Rafal Jozefowicz, and Samy Bengio. Generating sentences from a continuous space. In *Proceedings of The 20th SIGNLL Conference on Computational Natural Language Learning*, pages 10–21, 2016.
- [3] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. *arXiv:1509.00519 [cs, stat]*, 2016.
- [4] Alexandre Bône, Maxime Louis, Olivier Colliot, Stanley Durrleman, Alzheimer's Disease Neuroimaging Initiative, and others. Learning low-dimensional representations of shape data sets with diffeomorphic autoencoders. In *International Conference on Information Processing in Medical Imaging*, pages 195–207. Springer, 2019.
- [5] Francesco Paolo Casale, Adrian Dalca, Luca Saglietti, Jennifer Listgarten, and Nicolo Fusi. Gaussian process prior variational autoencoders. Advances in neural information processing systems, 31, 2018.

Bibliography II

- [6] Anthony L Caterini, Arnaud Doucet, and Dino Sejdinovic. Hamiltonian variational auto-encoder. In Advances in Neural Information Processing Systems, pages 8167–8177, 2018.
- [7] Clément Chadebec, Elina Thibeau-Sutre, Ninon Burgos, and Stéphanie Allassonnière. Data augmentation in high dimensional low sample size setting using a geometry-based variational autoencoder. *IEEE Transactions on Pattern Analysis* and Machine Intelligence, 2022.
- [8] Clément Chadebec, Louis J Vincent, and Stéphanie Allassonnière. Pythae: Unifying generative autoencoders in python-a benchmarking use case. Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks, 2022.
- [9] Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan, Prafulla Dhariwal, John Schulman, Ilya Sutskever, and Pieter Abbeel. Variational lossy autoencoder. arXiv preprint arXiv:1611.02731, 2016.
- [10] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent components estimation. arXiv preprint arXiv:1410.8516, 2014.
- [11] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp. arXiv preprint arXiv:1605.08803, 2016.

Bibliography III

- [12] Justin Domke and Daniel R Sheldon. Importance weighting and variational inference. *Advances in neural information processing systems*, 31, 2018.
- [13] Vincent Fortuin, Dmitry Baranchuk, Gunnar Rätsch, and Stephan Mandt. Gp-vae: Deep probabilistic time series imputation. In *International conference on artificial intelligence and statistics*, pages 1651–1661. PMLR, 2020.
- [14] Partha Ghosh, Mehdi SM Sajjadi, Antonio Vergari, Michael Black, and Bernhard Schölkopf. From variational to deterministic autoencoders. In 8th International Conference on Learning Representations, ICLR 2020, 2020.
- [15] Matthew D Hoffman and Matthew J Johnson. Elbo surgery: yet another way to carve up the variational evidence lower bound. In *Workshop in Advances in Approximate Bayesian Inference, NIPS*, volume 1, page 2, 2016.
- [16] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial networks. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 4401–4410, 2019.
- [17] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114 [cs, stat], 2014.

Bibliography IV

- [18] Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. Foundations and Trends® in Machine Learning, 12(4):307–392, 2019.
- [19] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max Welling. Improved variational inference with inverse autoregressive flow. Advances in neural information processing systems, 29, 2016.
- [20] Lars Maaløe, Casper Kaae Sønderby, Søren Kaae Sønderby, and Ole Winther. Auxiliary deep generative models. In *International conference on machine learning*, pages 1445–1453. PMLR, 2016.
- [21] Chris J Maddison, John Lawson, George Tucker, Nicolas Heess, Mohammad Norouzi, Andriy Mnih, Arnaud Doucet, and Yee Teh. Filtering variational objectives. Advances in Neural Information Processing Systems, 30, 2017.
- [22] Bo Pang, Tian Han, Erik Nijkamp, Song-Chun Zhu, and Ying Nian Wu. Learning latent space energy-based prior model. *Advances in Neural Information Processing Systems*, 33, 2020.
- [23] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density estimation. *Advances in neural information processing systems*, 30, 2017.

Bibliography V

- [24] Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational models. In International conference on machine learning, pages 324–333. PMLR, 2016.
- [25] Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2. Advances in Neural Information Processing Systems, 2020.
- [26] Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In International Conference on Machine Learning, pages 1530–1538. PMLR, 2015.
- [27] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In International conference on machine learning, pages 1278–1286. PMLR, 2014.
- [28] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10684–10695, 2022.
- [29] Tim Salimans, Diederik Kingma, and Max Welling. Markov chain monte carlo and variational inference: Bridging the gap. In *International Conference on Machine Learning*, pages 1218–1226, 2015.

Bibliography VI

- [30] Daniel Schwalbe-Koda and Rafael Gómez-Bombarelli. Generative models for automatic chemical design. *Machine Learning Meets Quantum Physics*, pages 445–467, 2020.
- [31] Achille Thin, Nikita Kotelevskii, Arnaud Doucet, Alain Durmus, Eric Moulines, and Maxim Panov. Monte carlo variational auto-encoders. In *International Conference* on *Machine Learning*, pages 10247–10257. PMLR, 2021.
- [32] Jakub Tomczak and Max Welling. Vae with a vampprior. In International Conference on Artificial Intelligence and Statistics, pages 1214–1223. PMLR, 2018.
- [33] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural information processing systems, 33:19667–19679, 2020.
- [34] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in neural information processing systems, 30, 2017.