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Variational Autoencoder - The Idea Autoencoder

Autoencoder

The objective =⇒ Dimensionnality Reduction

Figure: Simple Autoencoder

Need for a representation of the image =⇒ vectors

Figure: Simple Autoencoder
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Variational Autoencoder - The Idea Autoencoder

Autoencoder

Assumptions:

Let x ∈ X be a set a data. We assume that there exists z ∈ Z such that z is
a low dimensional representation of x

The encoder eθ and decoder dϕ are functions modelled by neural networks
(NNs) such that θ and ϕ are the weights of the NNs

Let x′ be the reconstructed samples, the objective is to have x ≃ x′

The Objective function writes:

L = ∥x− x′∥2 = ∥x− dϕ(z)∥2 = ∥x− dϕ(eθ(x))∥2

=⇒ The networks are optimised using stochastic gradient descent

ϕ← ϕ− ε · ∇ϕL
θ ← θ − ε · ∇θL
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Variational Autoencoder - The Idea Autoencoder

Autoencoder - Shortcomings

How to generate new data ?

Figure: Generation procedure ?

Figure: Potential latent space

How to sample form the latent space?

The Autoencoder was just trained to encode and decode the input data
without information on its structure or distribution.

=⇒ Need for a new framework

10 / 90



Variational Autoencoder - The Idea Autoencoder

Autoencoder - Shortcomings

How to generate new data ?

Figure: Generation procedure ? Figure: Potential latent space

How to sample form the latent space?

The Autoencoder was just trained to encode and decode the input data
without information on its structure or distribution.

=⇒ Need for a new framework

11 / 90



Variational Autoencoder - The Idea Autoencoder

Autoencoder - Shortcomings

How to generate new data ?

Figure: Generation procedure ? Figure: Potential latent space

How to sample form the latent space?

The Autoencoder was just trained to encode and decode the input data
without information on its structure or distribution.

=⇒ Need for a new framework

12 / 90



Variational Autoencoder - The Idea Autoencoder

Autoencoder - Shortcomings

How to generate new data ?

Figure: Generation procedure ? Figure: Potential latent space

How to sample form the latent space?

The Autoencoder was just trained to encode and decode the input data
without information on its structure or distribution.

=⇒ Need for a new framework

13 / 90



Variational Autoencoder - The Idea VAE framework

VAE - The Idea

An autoencoder based model...

Figure: Simple autoencoder

... but where an input data point is encoded as a distribution defined over
the latent space [17, 27]

Figure: VAE framework
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Variational Autoencoder - The Idea Some use cases

VAE - Use Cases

The VAE is a very versatile model that can be used to model complex
distributions [18] such as images [34, 33], time series [5, 13], natural
language [2], chemical structures [30], shapes [4] ...

It can be used for various tasks as well!
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Variational Autoencoder - The Idea Some use cases

Image Synthesis

VAE as a generative model for image data

Figure: Samples from NVAE [33] on FFHQ [16]
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Variational Autoencoder - The Idea Some use cases

Data Augmentation

VAE for Data Augmentation of 3D MRIs to enhance Alzheimer’s disease
automatic diagnosis [7]

Figure: Classification results with state-of-the-art CNN for Alzheimer disease from [7]
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Variational Autoencoder - The Idea Some use cases

Clustering

VAE for clustering
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Figure: 2-dimensional latent spaces learned by a vanilla VAE (N -VAE), Poincaré VAE
(P-VAE) and Hyperspherical VAE (S-VAE) on MNIST. The colors represent the digits.
Plots are made using [8]

.
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Variational Autoencoder - The Idea Some use cases

Feature Extraction

VAE used as feature extractor (e.g. Stable diffusion) [28]

Figure: Latent Diffusion Model architecture [28]
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Variational Autoencoder - The Idea Mathematical foundations

VAE - Mathematical Considerations

Let x ∈ X be a set of data and {Pθ, θ ∈ Θ} be a parametric model

We assume there exists latent variables z ∈ Z living in a smaller space such
that the marginal likelihood writes

pθ(x) =

∫
pθ(x|z)qprior(z)dz ,

where qprior is a prior distribution over the latent variables and pθ(x|z) is
referred to as the decoder

Example:

qprior = N (0, I), pθ(x|z) =
D∏
i=1

B(πθi(z))

Objective:

Maximizing the likelihood of the model

Problem: The integral is often intractable.

21 / 90



Variational Autoencoder - The Idea Mathematical foundations

VAE - Mathematical Considerations

Let x ∈ X be a set of data and {Pθ, θ ∈ Θ} be a parametric model

We assume there exists latent variables z ∈ Z living in a smaller space such
that the marginal likelihood writes

pθ(x) =

∫
pθ(x|z)qprior(z)dz ,

where qprior is a prior distribution over the latent variables and pθ(x|z) is
referred to as the decoder

Example:

qprior = N (0, I), pθ(x|z) =
D∏
i=1

B(πθi(z))

Objective:

Maximizing the likelihood of the model

Problem: The integral is often intractable.

22 / 90



Variational Autoencoder - The Idea Mathematical foundations

VAE - Mathematical Considerations

Let x ∈ X be a set of data and {Pθ, θ ∈ Θ} be a parametric model

We assume there exists latent variables z ∈ Z living in a smaller space such
that the marginal likelihood writes

pθ(x) =

∫
pθ(x|z)qprior(z)dz ,

where qprior is a prior distribution over the latent variables and pθ(x|z) is
referred to as the decoder

Example:

qprior = N (0, I), pθ(x|z) =
D∏
i=1

B(πθi(z))

Objective:

Maximizing the likelihood of the model

Problem: The integral is often intractable.

23 / 90



Variational Autoencoder - The Idea Mathematical foundations

VAE - Mathematical Considerations

Let x ∈ X be a set of data and {Pθ, θ ∈ Θ} be a parametric model

We assume there exists latent variables z ∈ Z living in a smaller space such
that the marginal likelihood writes

pθ(x) =

∫
pθ(x|z)qprior(z)dz ,

where qprior is a prior distribution over the latent variables and pθ(x|z) is
referred to as the decoder

Example:

qprior = N (0, I), pθ(x|z) =
D∏
i=1

B(πθi(z))

Objective:

Maximizing the likelihood of the model

Problem: The integral is often intractable.

24 / 90



Variational Autoencoder - The Idea Mathematical foundations

VAE - Mathematical Considerations

Let x ∈ X be a set of data and {Pθ, θ ∈ Θ} be a parametric model

We assume there exists latent variables z ∈ Z living in a smaller space such
that the marginal likelihood writes

pθ(x) =

∫
pθ(x|z)qprior(z)dz ,

where qprior is a prior distribution over the latent variables and pθ(x|z) is
referred to as the decoder

Example:

qprior = N (0, I), pθ(x|z) =
D∏
i=1

B(πθi(z))

Objective:

Maximizing the likelihood of the model

Problem: The integral is often intractable.

25 / 90



Variational Autoencoder - The Idea Mathematical foundations

VAE - Mathematical Considerations

One may write:

log pθ(x) = log

(∫
pθ(x|z)qprior(z)dz

)
= log

(∫
pθ(x, z)dz

)
= log

(∫
pθ(x, z)

q(z)

q(z)
dz

)
, for any pdf q

≥
∫ (

log
pθ(x, z)

q(z)

)
q(z)dz , using Jensen’s inequality

≥
∫

(log pθ(x, z)) q(z)dz −H(q(z))

with H the entropy of q(z).

The equality holds for q(z) = pθ(z|x).
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Variational Autoencoder - The Idea Mathematical foundations

The ELBO

Well-know issue: the posterior q(z) = pθ(z|x) is intractable.
−→ use Expectation-Maximisation algorithms (up to the MCMC-SAEM
version)

OR approximate this posterior with amortised variational inference → ELBO

Introduce a parametric approximation:

qϕ(z|x) ≃ pθ(z|x) ,

where qϕ(z|x) = N (µϕ(x),Σϕ(x))

This leads to an unbiased estimate of the log-likelihood

p̂θ(x) =
pθ(x, z)

qϕ(z|x)
, Ez∼qϕ(z|x)[p̂θ(x)] = pθ(x) ,

and the definition of the Evidence Lower Bound (ELBO):

log pθ(x) ≥ Ez∼qϕ(z|x)[log(pθ(x, z))− log(qϕ(z|x))]
≥ ELBO
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Variational Autoencoder - The Idea Mathematical foundations

Variational inference: The ELBO

Objective:

1. Optimise the ELBO as a function instead of the target distribution

Use stochastic gradient descent in both θ and ϕ
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Variational Autoencoder - The Idea Mathematical foundations

The Reparametrisation Trick for stochastic gradient
descent

Recall the ELBO

log pθ(x) ≥ Ez∼qϕ(z|x)[log(pθ(x, z))− log(qϕ(z|x))]
≥ ELBO

Since z ∼ N (µϕ(x),Σϕ(x)), the model is not amenable to gradient descent
w.r.t ϕ

(a) Back-propagation impossible

=⇒

(b) Back-propagation possible

=⇒ Optimisation with respect to encoder and decoder parameters made possible !

Objective =⇒ OK
37 / 90



Variational Autoencoder - The Idea Mathematical foundations

The Reparametrisation Trick for stochastic gradient
descent

Recall the ELBO

log pθ(x) ≥ Ez∼qϕ(z|x)[log(pθ(x, z))− log(qϕ(z|x))]
≥ ELBO

Since z ∼ N (µϕ(x),Σϕ(x)), the model is not amenable to gradient descent
w.r.t ϕ

(a) Back-propagation impossible

=⇒

(b) Back-propagation possible

=⇒ Optimisation with respect to encoder and decoder parameters made possible !

Objective =⇒ OK
38 / 90



Variational Autoencoder - The Idea Mathematical foundations

The Reparametrisation Trick for stochastic gradient
descent

Recall the ELBO

log pθ(x) ≥ Ez∼qϕ(z|x)[log(pθ(x, z))− log(qϕ(z|x))]
≥ ELBO

Since z ∼ N (µϕ(x),Σϕ(x)), the model is not amenable to gradient descent
w.r.t ϕ

(a) Back-propagation impossible

=⇒

(b) Back-propagation possible

=⇒ Optimisation with respect to encoder and decoder parameters made possible !

Objective =⇒ OK
39 / 90



Variational Autoencoder - The Idea Mathematical foundations

Generating new samples

We only need to sample z ∼ N (0, I) and feed it to the decoder.

Figure: Generation procedure using prior

Pros:

Very simple to use in practice

Cons:

The prior and posterior are not expressive enough to capture complex
distributions

Poor latent space prospecting
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Enhancing the model

Improving the model

Can we do better?

43 / 90



Enhancing the model Tweaking the variational distribution

Tweaking the Approximate Posterior Distribution

The ELBO can written as

ELBO = log pθ(x)−KL(qϕ(z|x)||pθ(z|x))︸ ︷︷ ︸
≈0 if qϕ(z|x)≈pθ(z|x)

.

Since the Kullback-Leiber divergence is always non-negative, the objective is
to try to make it vanish by tweaking the approximate posterior qϕ(z|x)
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Enhancing the model Tweaking the variational distribution

Normalizing Flows

The idea is to use smooth invertible parameterised mappings fψ to “sample”
z [26]

K transformations are then applied to a latent variable z0 drawn from an
initial distribution q (here q = qϕ) leading to a final random variable
zK = fKx ◦ · · · ◦ f1

x(z0) whose density writes

qϕ(zK |x) = qϕ(z0|x)
K∏
k=1

|detJfk
x
|−1 ,

E.g. Planar flows [26], NICE [10], radial flows [26], RealNVP [11], Masked
Autoregressive Flows (MAF) [23] or Inverse Autoregressive Flows (IAF) [19]
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Enhancing the model Tweaking the variational distribution

Auxiliary Latent Variables

Idea: Work with an extended space by adding an auxiliary continuous random
variable u ∈ U and consider an augmented inference model [29, 20, 24]

qϕ(u, z|x) = qϕ(u|x)qϕ(z|u, x) .

u allows to access to a potentially richer class of qϕ(z|x) since

qϕ(z|x) =
∫
U
qϕ(u, z|x)du .

The extended generative model follows

pθ(x, z, u) = pθ(u|x, z)pθ(x, z) .
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Enhancing the model Tweaking the variational distribution

Auxiliary Latent Variables

In a similar fashion as Eq. (1), one can build an unbiased estimator of the
marginal likelihood pθ(x)

p̂θ(x) =
pθ(x, z, u)

qϕ(u, z|x)
and E(u,z)∼qϕ

[
p̂θ
]
= pθ(x) .

This allows to derive an ELBO

log pθ(x) = logE(u,z)∼qϕ [p̂θ(x)] ,

≥ E(u,z)∼qϕ

[
log

(
pθ(x, z, u)

qϕ(u, z|x)

)]
= Laux(θ, ϕ, x) .

E.g. Hierarchical VAEs [24], Hamiltonian VAE [6], Riemannian Hamiltonian
VAE [7], MCMC VAE [29, 31]
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Building Better Estimators

The estimator used in the vanilla VAE is given by

p̂θ(x) =
pθ(x, z)

qϕ(z|x)
and Ez∼qϕ

[
p̂θ
]
= pθ(x) . (1)

Several approached proposed to build more complex estimators of the
marginal likelihood pθ(x) [3, 21, 12, 31]

E.g Importance Weighted AutoEncoder (IWAE) that uses an ELBO derived
from the K-sample importance weighted estimator.

p̂θ(x) =
1

K

K∑
i=1

pθ(x, zi)

qϕ(zi|x)
and Ez1,...,zK∼qϕ(z|x)

[
p̂θ
]
= pθ(x) .

LIWAE(θ, ϕ, x) = Ez1,...,zK∼qϕ(z|x)

[
log

1

K

K∑
i=1

pθ(x, zi)

qϕ(zi|x)

]
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Enhancing the model Questioning our priors

Rethinking our Priors

Recall the vanilla VAE ELBO

L(θ, ϕ, x) = Eqϕ(z|x) [log pθ(x|z)]−KL(qϕ(z|x)||p(z)) .

One may show that the prior maximising the ELBO is given by the
aggregated posterior [15, 32]

qavg(z) =
1

N

N∑
i=1

qϕ(z|xi)

However, it can lead to overfitting and is hard to use in practice
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Enhancing the model Questioning our priors

Rethinking our Priors

Several axis of development were proposed in the literature to improve the
generative capability of the model and reduce the regularisation coming from the
prior.

Approximate the aggregated posterior [32]:

pVAMP
λ (z) =

1

K

K∑
i=1

qϕ(z|uk) ,

where λ corresponds to the prior’s parameters λ = {ϕ, u1, . . . , uK}.
Learn the prior during training [9, 25, 22, 1]

post-training density estimation with Gaussian mixture or flows [34, 14]
=⇒ Estimate density of the latent code
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Training VAEs wit Pythae

Let’s Train VAEs
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VAE in Practice with Pythae

What is Pythae?

Pythae is a Python library that implements some of the most common VAEs
models
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VAE in Practice with Pythae

Why Pythae ?

Unifying implementations

× Existing implementations may be difficult to adapt to other use-cases, be in
different frameworks or no longer maintained.

✓ Pythae’s brick-like structure allows for seamless but efficient interchange
between models, sampling techniques, network architectures, model
hyper-parameters and training schemes.

A reproducible research environment

× Reproducibility is hard: implementations may no longer maintained or
unavailable.

✓ Pythae reproduced most of the most popular GAE methods (when code was
available or enough information provided in the paper).

Usable by all

× Existing codes may only allow reproduction of specific results available in the
paper.

✓ Pythae makes GAE models accessible to beginners and experts. The library
has an online documentation and is also illustrated through tutorials
available either on a local machine or on the Google Colab platform.
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Pythae - Code structure

pythae.models

encoder architecture

decoder architecture

model config

model trained model

pythae training pipeline pythae generation pipeline

training config 
model config 
trained model

sampler config 
generated samples 

pythae 
AutoModel

training config train/eval data sampler config

required

optional

pythae modules

🧪 
wandb

dataset

pythae.trainers

callbacks

schedulers

optimizers

pythae.samplers

saves

logs

saves

autoencoder

🤗 
HF Hub

Figure: Code structure
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Pythae - API

Architecture Definition

Training Data Generation
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Zoom on Configurations

How to define my training configuration?

Figure: Example of a training configuration
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Zoom on Configurations

How to define my model configuration?

Figure: Example of a model configuration
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Distributed Training with Pythae

Pythae also support distributed training using PyTorch DDP

Figure: Training configuration in a distributed setting
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Distributed Training with Pythae

Pythae also support distributed training using PyTorch DDP
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Pythae - Implemented Models

Figure: 25 implemented models
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Pythae - Experiments monitoring

Pythae integrates experiment monitoring tools

Callback set-up

Callback usage
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Pythae - Experiments monitoring
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Pythae - Model sharing

Pythae allows model sharing through the HuggingFace Hub

Model saving

Model loading
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Pythae - Resources

Thank you!

✓ Github: https://github.com/clementchadebec/benchmark_VAE

✓ Online documentation: https://pythae.readthedocs.io/en/latest/

✓ Pypi project page: https://pypi.org/project/pythae/

✓ Open to contributors!
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